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Abstract

We study the controlled heat equations with analytic memory from two perspectives:
reachable subspaces and control regions. Due to the hybrid parabolic-hyperbolic phenomenon
of the equations, the support of a control needs to move in time to efficiently control the
dynamics. We show that under a sharp sufficient geometric condition imposed to the control
regions, the difference between reachable subspaces of the controlled heat equations, with
and without memory, is precisely given by a Sobolev space. The appearance of this Sobolev
space is attributed to the memory which makes the equation having the wave-like nature.
The main ingredients in the proofs of our main results are as: first, the decomposition of the
flow (generated by the equation with the null control) given in [31], second, an observability
inequality built up in this paper.

Keywords. Controlled heat equations with memory, reachable subspaces, control regions

1 Introduction

We consider the following controlled heat equation with memory:
∂ty(t, x)−∆y(t, x) +

∫ t

0
M(t− s)y(s, x)ds = χQ(t, x)u(t, x), (t, x) ∈ R+ × Ω,

y(t, x) = 0, (t, x) ∈ R+ × ∂Ω,
y(0, x) = y0(x), x ∈ Ω.

(1.1)

Here, R+ := (0,+∞), Ω ⊂ Rn (n ∈ N+ := {1, 2, 3, · · · }) is a bounded domain with a C2-

boundary ∂Ω, Q is a control region, which is a nonempty open subset in R+ ×Ω (where R+ :=

[0,+∞) and Ω is the closure of Ω in Rn), χQ is the characteristic function of Q, y0 is an initial

datum, u is a control and M is a memory kernel. Throughout this paper, we assume

(H) The memory kernel M is a real analytic and nonzero function over R+.
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The aim of the paper is to study the equation (1.1) from two perspectives: reachable sub-

spaces and control regions. To state our main results, we need the following definitions:

(D1) (Reachable sets) Given p ∈ [1,+∞], S > 0 and y0 ∈ L2(Ω), the following set is called a

reachable set for the equation (1.1) at time S:

RpM (S, y0) :=
{
y(S; y0, u) : u ∈ Lp(R+;L2(Ω))

}
, (1.2)

where y(·; y0, u) is the solution of the equation (1.1), while the following set is called a

reachable set for the equation (1.1) with M = 0 at time S:

Rp0(S, y0) :=
{
z(S; y0, u) : u ∈ Lp(R+;L2(Ω))

}
, (1.3)

where z(·; y0, u) is the solution of the equation (1.1) with M = 0.

(D2) (Moving control condition, MCC for short) Let T > 0 and let Q be a nonempty open

subset in R+ × Ω. The pair (Q,T ) is said to satisfy MCC, if for each x ∈ Ω, there is

t ∈ [0, T ] so that (t, x) ∈ Q.

It deserves mentioning that in the above, R+ × Ω is viewed as a topology space with the

topology induced from R× Rn. Thus, the points in Q are allowed to be at the boundary

of R+ × Ω. This makes the description of MCC simpler.

(D3) (Space Hs) Let ηj be the jth eigenvalue of −A and let ej be the corresponding normalized

eigenfunction. For each s ∈ R, we define the real Hilbert space:

Hs :=
{
f =

∞∑
j=1

ajej : (aj)j≥1 ⊂ R,
∞∑
j=1

|aj |2ηsj < +∞
}
, (1.4)

equipped with the inner product:

〈f, g〉Hs :=

∞∑
j=1

ajbjη
s
j , f =

∞∑
j=1

ajej ∈ Hs and g =

∞∑
j=1

bjej ∈ Hs, (1.5)

where (aj)j≥1, (bj)j≥1 ⊂ R.

Two main results of this paper are given in order.

Theorem 1.1. Assume that (Q,T ) satisfies MCC. Then for any 1 ≤ p ≤ +∞, S ≥ T and

y0 ∈ L2(Ω),

RpM (S, y0) = Rp0(S, y0) +H4. (1.6)

Theorem 1.2. Assume that there is p ∈ [1,+∞] and T > 0 so that for any y0 ∈ L2(Ω),

0 ∈ RpM (T, y0). (1.7)

Then (Q,T ) satisfies MCC, i.e., given x ∈ Ω, there is t ∈ [0, T ] so that (t, x) ∈ Q. (Here Q is

the closure of Q in R× Rn.)



3

The next result is a direct consequence of Theorem 1.1.

Corollary 1.3. Assume that (Q,T ) satisfies MCC. Then given S ≥ T , y0 ∈ L2(Ω) and y1 ∈ H4,

there is u ∈ L∞(R+;L2(Ω)) so that y(S; y0, u) = y1.

Several notes on the above results, as well as definitions, are as follows:

(a1) Theorem 1.1 can be understood in the following manner: The exact difference between

reachable sets of the controlled heat equations with and without memory is the space H4,

due to the wave-like effect of the system (1.1). This result seems to be new for us.

(a2) By Theorem 1.1, we can show that MCC for (Q,T ) implies that each RpM (S, y0), with

S ≥ T , is a linear subspace of L2(Ω). (This will be shown in (iii) of Proposition 5.1 in

Appendix 5.1.)

(a3) MCC for (Q,T ) is a sharp sufficient condition on (1.6) (or (1.7)) in the following sense:

MCC for (Q,T )⇒ (1.6) (or (1.7)); (1.6) (or (1.7))⇒ MCC for (Q,T ).

(The above will be shown in (iv) and (v) of Proposition 5.1 in Appendix 5.1.)

(a4) Corollary 1.3 gives a kind of one-state exact controllability for the equation (1.1), while

(1.7) means the one-state null controllability for the equation (1.1). Here, by the one-state

controllability, we mean the usual controllability. We use this terminology to distinguish

it from the memory-type controllability studied in [4, Definition 1.1].

(a5) The real analyticity of M is mainly used to prove some unique continuation property for

the system (1.1) (see Lemma 3.4). It is open for us whether such unique continuation

property holds for general memory kernels. It deserves mentioning the work [4] where for

(1.1) with some polynomial-like memory kernel, the authors built up a Carleman estimate,

from which the unique continuation follows at once. However, we do not know how to get

the similar Carleman estimate for (1.1) with general analytic kernel M , and thus we show

the unique continuation in another way.

(a6) The reachable sets studied in this paper do not correspond to controlling the full dynamics,

which needs dealing with the memory terms as what have been done in [4] for (1.1) with

polynomial-like kernel M . (See also [21] for the wave equation with memory.) It seems to

be a challenging issue to study reachable sets with controlling the full dynamics. We are

not clear how to define appropriately reachable sets with controlling the full dynamics for

(1.1) where M is an analytic function.

(a7) Our MCC is originally from [4, Assumption 4.1], though it is strictly weaker than the

later (see Example 5.2 in Appendix 5.2). But on the other hand, the sharpness of MCC

for (Q,T ) seems to be new. The proposal of MCC is due to the wave-like nature (for
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the equation (1.1)) which is manifested in the propagation of singularities along the time

direction for the equation (1.1) (see [31]). Essentially, MCC for (Q,T ) requires that each

characteristic line must enter the control region Q before the time T . This is similar to

(but looks simpler than) the well-known GCC for the classical wave equations (see, for

instance, [27] and [1]).

We next introduce some related works. We begin with some works on the reachable subspaces

for heat equations. For some one-dimensional boundary control heat equations, the reachable

subspaces are shown to be time-invariant in [8, 23], and to include a subspace of some analytic

functions in [9, 6]. Furthermore, it was proved in [22, 5, 16] that a reachable subspace is

sandwiched between two spaces of analytic functions and the difference of these two spaces is

very small. Recently, these results are extended to some high-dimensional boundary control

heat equation over a ball in [28].

We then refer to some works on differential equations with persistent memory. ( The equation

(1.1) is one of them.) Such systems have been studied in many literatures (see, for instance,

[2, 7, 14, 25, 29, 32] and their references therein). One of several intense topics about these

equations is the controllability (see [25] for an overview).

We now introduce some works on the one-state controllability of differential equations with

memory. The controllability and unique continuation for parabolic equations have been widely

studied in literatures (see for instance, [10, 12, 18, 19, 26, 34]). However, the controllability for

parabolic equations with memory is far from clear. Here we would like to mention what follows:

The lack of the null controllability of such equations was studied in [13, 15, 33] and the references

therein; The approximate controllability for the equation (1.1) (where Q = R+ × ω, with ω an

open subset of Ω) was built up in [33]; The exact controllability of some parabolic-like equation

with memory in the leading operator, was obtained in [11] where the control time needs to be

larger and control region needs to satisfy some geometric condition; The spectral controllability

was studied in [24] for a class of control systems with memory in a finite dimension setting.

Finally, we mention the memory-type null controllability. By our understanding, when built

up the heat equation, people agreed that zero is a steady state. Later, people thought of that

the heat equation cannot accurately simulate the thermal process and the heat equation with

memory can do better. It is swing and roundabouts that people improved the model but lost the

steady state zero. Thus, for the null controllability of the equation (1.1) with memory, it is not

enough to consider only one state variable. In [4], the null controllability of two state variables

(called as the memory-type null controllability) was studied for the equation (1.1) where M is a

polynomial-like function. For the works in this direction, we also quote [3, 21] and the references

therein.

The rest of this paper is organized as follows: Section 2 gives some preliminaries; Section

3 builds up an observability inequality; Section 4 proves the main theorems; Section 5 is the

appendix.
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2 Preliminaries

We recall [31, (1.2)] for the definition of the flow Φ(t): for each t ≥ 0,

Φ(t)y0 := y(t; y0, 0), y0 ∈ L2(Ω). (2.1)

It follows by [31, Theorem 1.1] that each Φ(t) (with t ≥ 0) can be treated as an element in the

space L(Hs) for any s ∈ R. Let

Af := ∆f, with its domain D(A) := H2(Ω) ∩H1
0 (Ω). (2.2)

Write {etA}t≥0 is the C0 semigroup generated by the operator A.

In this section, we will first review some properties of the flow Φ(t), including a decomposi-

tion theorem for the flow, which are obtained in [31], and then give some consequences of the

decomposition theorem.

2.1 Review on the decomposition of the flow

We start with recalling the following functions from [31]: (i) for each l ∈ N, let
hl(t) := (−1)l

l∑
j=0

C l−jl

d(l−j)

dt(l−j)
M ∗ · · · ∗M︸ ︷︷ ︸

j

(t), t ≥ 0,

pl(t) := −hl(0) + (−1)l+1
∑

m, j ∈ N+,

2j − l− 1 ≤ m ≤ j

(
C l−j+ml

d(l−j+m)

dt(l−j+m)
M ∗ · · · ∗M︸ ︷︷ ︸

j

(0)

)
(−t)m

m!
, t ≥ 0,

(2.3)

where Cmβ := β!
m!(β−m)! and M ∗ · · · ∗M︸ ︷︷ ︸

j

:= 0 if j = 0; (ii) the flow kernel is defined by

KM (t, s) :=

+∞∑
j=1

(−s)j

j!
M ∗ · · · ∗M︸ ︷︷ ︸

j

(t− s), t ≥ s. (2.4)

By the assumption (H), the next decomposition theorem (i.e., Theorem 2.1), Proposition 2.2

and Proposition 2.3 follow from [31, Theorem 1.1], [31, Proposition 4.6] and [31, Proposition

4.7], respectively.

Theorem 2.1. For each N ∈ N+ \ {1}, it holds that

Φ(t) =PN (t) + HN (t) + RN (t), t ≥ 0, (2.5)

with 
PN (t) := etA + etA

∑N−1
l=0 pl(t)(−A)−l−1,

HN (t) :=
∑N−1

l=0 hl(t)(−A)−l−1,
RN (t) := RN (t,−A)(−A)−N−1,

t ≥ 0, (2.6)
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where

RN (t, τ) :=

∫ t

0
τe−τs∂Ns KM (t, s)ds, t ≥ 0, τ ≥ 0.

Moreover, for each s ∈ R, Φ(t), with t ≥ 0, can be treated as an element in L(Hs); and

RN (·,−A)|R+ belongs to C(R+;L(Hs)) and satisfies

∥∥RN (t,−A)‖L(Hs) ≤ et
{

exp

[
N(1 + t)

( N∑
j=0

max
0≤s≤t

∣∣∣ dj
dsj

M(s)
∣∣∣)]− 1

}
, t ≥ 0. (2.7)

Besides, for each t ≥ 0, {hl(t)}l≥1 is not the zero sequence.

Proposition 2.2. Let KM be given by (2.4). Then

Φ(t)∗ = Φ(t) = etA +

∫ t

0
KM (t, τ)eτAdτ, t ≥ 0. (2.8)

Proposition 2.3. For each s ∈ R, Φ(·) is real analytic from R+ to L(Hs).

2.2 Some consequence of the decomposition theorem

This subsection gives two consequences of Theorem 2.1 which concerns the leading terms of

the first two components in the decomposition (2.5) and will be used in the proof of our main

theorems.

Corollary 2.4. There is Rc ∈ C
(
R+;C(R+)

)
so that

Φ(t) = −M(t)A−2 +Rc(t,−A)A−3, t > 0. (2.9)

Moreover, for each s ∈ R, Rc(·,−A) belongs to C(R+;L(Hs)) and satisfies∥∥Rc(t,−A)‖L(Hs) ≤ t−3 exp
(

2(1 + t)
(
1 + ‖M‖C2([0,t])

))
, t > 0. (2.10)

Proof. By applying Theorem 2.1 whit N = 2, we see that for each t ≥ 0,

Φ(t) = etA + etA
(
− p0(t)A−1 + p1(t)A−2

)
+
(
− h0(t)A−1 + h1(t)A−2

)
−R2(t,−A)A−3. (2.11)

At the same time, it follows from (2.3) that for each t ≥ 0,
p0(t) = M(0)t,

p1(t) = M(0)−M ′(0)t+ 1
2M(0)2t2,

h0(t) = 0, h1(t) = −M(t).

(2.12)

This, along with (2.11), yields

Φ(t) =−M(t)A−2 −R2(t,−A)A−3

+ etA
[
Id−M(0)tA−1 +

(
M(0)−M ′(0)t+

1

2
M(0)2t2

)
A−2

]
, t ≥ 0. (2.13)
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Next, we define that for each t > 0,

Rc(t,−A) := etA
[
A3 −M(0)tA2 +

(
M(0)−M ′(0)t+

1

2
M(0)2t2

)
A

]
−R2(t,−A). (2.14)

At the same time, one can directly check that for each j ∈ {1, 2, 3} and each s ∈ R,

‖AjetA‖L(Hs) ≤ jje−jt−j ≤ 2t−j , t > 0. (2.15)

Now, (2.9) follows from (2.13) and (2.14), while (2.10) follows by (2.14), (2.15) and (2.7) with

N = 2. This ends the proof of Corollary 2.4.

Corollary 2.5. There is R̃c ∈ C
(
R+;C(R+)

)
so that

Φ(t) = etA + R̃c(t,−A)A−2, t ≥ 0. (2.16)

Moreover, for each s ∈ R, R̃c(·,−A) belongs to C(R+;L(Hs)) and satisfies that for some C1 > 0,∥∥R̃c(t,−A)‖L(Hs) ≤ C1 exp
(

2(1 + t)
(
1 + ‖M‖C2([0,t])

))
, t > 0.

Proof. From (2.11), it follows

Φ(t) = etA + R̃c(t,−A)A−2, t ≥ 0, (2.17)

where

R̃c(t,−A) :=
(
p1(t)− p0(t)A

)
+ etA

(
h1(t)− h0(t)A

)
−R2(t,−A)A−1, t ≥ 0.

Then by (2.17), we get (2.16), with the above R̃c.
Next, one can directly check that for each s ∈ R, ‖tAetA‖L(Hs) ≤ 1, when t ≥ 0, which, along

with (2.12) and (2.7), yields the desired estimate about the above R̃c. This completes the proof

of Corollary 2.5.

2.3 Variation of constant formula

The aim of this subsection is to give the variation of constant formula for the equation (1.1) in

the next Proposition 2.6. It deserves mentioning what follows: this formula is not as easy as we

think, since {Φ(t)}t≥0 has no the semigroup property: Φ(t+ s) = Φ(t)Φ(s).

Proposition 2.6. When y0 ∈ L2(Ω) and u ∈ L1
loc(R+;L2(Ω)),

y(t; y0, u) = Φ(t)y0 +

∫ t

0
Φ(t− s)(χQu)(s)ds, t ≥ 0. (2.18)

Proof. Arbitrarily fix y0 ∈ L2(Ω) and u ∈ L1
loc(R+;L2(Ω)). Simply write y(·) for the solution

y(·; y0, u). First of all, (2.18) is clearly true for t = 0. Now we arbitrarily fix t > 0 and z ∈ H2.

Write

ϕ(s; z) := Φ(t− s)z, s ∈ [0, t]. (2.19)
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Then by (2.19), (2.1) and (1.1) (with u = 0), we see that ϕ(·; z) satisfies

ϕ′(s; z) +Aϕ(s; z) +

∫ t

s
M(τ − s)ϕ(τ ; z)dτ = 0, s ∈ (0, t); ϕ(t; z) = z. (2.20)

By (1.1) and (2.20), we find〈
y(t), ϕ(t; z)

〉
L2(Ω)

−
〈
y0, ϕ(0; z)

〉
L2(Ω)

=

∫ t

0

d

ds

〈
y(s; y0, u), ϕ(s; z)

〉
L2(Ω)

ds (2.21)

=

∫ t

0

〈
Ay(s) +

∫ s

0
M(s− τ)y(τ)dτ + χQu(s), ϕ(s; z)

〉
H−2,H2

ds+

∫ t

0

〈
y(s), ϕ′(s; z)

〉
L2(Ω)

ds.

Meanwhile, by the Fubini Theorem, it follows that∫ t

0

〈∫ s

0
M(s− τ)y(τ)dτ, ϕ(s; z)

〉
H−2,H2

ds =

∫ t

0

∫ t

τ
M(s− τ)

〈
y(τ), ϕ(s; z)

〉
H−2,H2dsdτ

=

∫ t

0

〈
y(s),

∫ t

s
M(τ − s)ϕ(τ ; z)dτ

〉
L2(Ω)

ds.

This, along with (2.21), yields〈
y(t), ϕ(t; z)

〉
L2(Ω)

−
〈
y0, ϕ(0; z)

〉
L2(Ω)

=

∫ t

0

〈
y(s), ϕ′(s; z) +Aϕ(s; z) +

∫ t

s
M(τ − s)ϕ(τ ; z)dτ

〉
L2(Ω)

ds+

∫ t

0
〈χQu(s), ϕ(s; z)〉L2(Ω)ds.

The above, together with (2.20) and (2.19), indicates

〈
y(t), z

〉
L2(Ω)

−
〈
y0, Φ(t)z

〉
L2(Ω)

=

∫ t

0
〈χQu(s), Φ(t− s)z〉L2(Ω)ds.

Since z was arbitrarily taken from H2, we can use a standard density argument in the above, as

well as the first equality in (2.8), to get (2.18). This ends the proof of Proposition 2.6.

3 Observability estimates of the flow

The main result of this section is the following Theorem 3.1 which gives observability estimates

for the flow Φ(t). This theorem will be used in the proof of Theorem 1.1. As what we mentioned

in the note (a5) in Section 1, we are able to get such estimates only for the case where M is real

analytic.

Theorem 3.1. Assume that (Q,T ) satisfies MCC. Then for each S ≥ T , there is C > 0 so that

for each z ∈ L2(Ω),

‖z‖H−4 ≤ C
∫ S

0
(S − t)3‖χQΦ(S − t)z‖L2(Ω)dt; (3.1)∫ S

0
(S − t)3‖χQΦ(S − t)z‖L2(Ω)dt ≤ C‖z‖H−4 . (3.2)
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We will adopt the well-known three-steps strategy for the observability of the wave equation

(see, for instant, [27, 1]) to prove Theorem 3.1. To this end, we need several lemmas. The first

one is about an intrinsic property of MCC.

Lemma 3.2. Assume that (Q,T ) satisfies MCC. Then for each S ≥ T ,

C(M,Q, T, S) := inf
x∈Ω

∫ S

0
χQ(t, x)(S − t)3|M(S − t)|dt > 0. (3.3)

Proof. First of all, we mention that Q is open in R+ × Ω which is viewed as a topology space

induced the topology from R×Rn. Next, it follows by the definition of MCC for (Q,T ) that for

each x ∈ Ω, there exists rx > 0 and an interval Ix ⊂⊂ (0, T ) so that

Ix ×
(
B(x, rx) ∩ Ω

)
⊂ Q ∩

(
(0, T )× Ω

)
. (3.4)

(Here and in what follows, the set B(x, r), with x ∈ Rn and r > 0, denotes the open ball, centered

at x and of radius r > 0.) Meanwhile, it is clear that

Ω ⊂ ∪x∈ΩB(x, rx).

Since Ω is compact, the above, together with (3.4), implies that there are finitely many xj ∈ Ω,

j = 1, . . . , N , so that

Ω ⊂ ∪Nj=1B(xj , rxj ) and ∪Nj=1 Ixj ×
(
B(xj , rxj ) ∩ Ω

)
⊂ Q ∩

(
(0, T )× Ω

)
. (3.5)

Then for each x̂ ∈ Ω, there is ĵ ∈ {1, . . . , N} so that

x̂ ∈ B(xĵ , rxĵ ) and Ixĵ × {x̂} ⊂ Q ∩
(
(0, T )× Ω

)
.

These yield that when S ≥ T and x̂ ∈ Ω,∫ S

0
χQ(t, x̂)(S − t)3|M(S − t)|dt ≥

∫
Ix
ĵ

(S − t)3|M(S − t)|dt,

which leads to

C(M,Q, T, S) ≥ min
1≤j≤N

∫
Ixj

(S − t)3|M(S − t)|dt, when S ≥ T. (3.6)

Meanwhile, it follow by the assumption (H) that M(t) 6= 0 for a.e. t > 0. This, along with (3.6),

shows (3.3). Hence, we finish the proof of Lemma 3.2.

The following lemma corresponds to the first step of the above-mentioned three-steps strat-

egy, which is about a relaxed observability inequality.

Lemma 3.3. Assume that (Q,T ) satisfies MCC. Then for each S ≥ T , there is C > 0 so that

‖z‖H−4 ≤ C
(∫ S

0
(S − t)3‖χQΦ(S − t)z‖L2(Ω)dt+ ‖z‖H−6

)
for each z ∈ L2(Ω). (3.7)
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Proof. Arbitrarily fix S ≥ T and z ∈ L2(Ω). By Corollary 2.4 (more precisely, by (2.9) and

(2.10)), using the triangle inequality and the fact that ‖A−3z‖L2(Ω) = ‖z‖H−6 , we can find

C1 > 0 (independent of z) so that

‖χQΦ(S − t)z‖L2(Ω) ≥ ‖χQM(S − t)A−2z‖L2(Ω) − C1(S − t)−3‖z‖H−6 for each t ∈ (0, S).

This yields ∫ S

0
(S − t)3‖χQM(S − t)A−2z‖L2(Ω)dt

≤
∫ S

0
(S − t)3‖χQΦ(S − t)z‖L2(Ω)dt+ C1S‖z‖H−6 . (3.8)

Next, we simply write

f(t, x) := χQ(t, x)(S − t)3M(S − t)(A−2z)(x), t ∈ (0, S), x ∈ Ω. (3.9)

The above f can be treated as a function from Ω to L1(0, S) or from (0, S) to L2(Ω). Moreover,

we have

‖f‖L2(Ω;L1(0,S)) = sup
‖g‖L2(Ω)≤1

∫
Ω

(∫ S

0
|f(t, x)|dt

)
g(x)dx

≤ sup
‖g‖L2(Ω)≤1

∫ S

0

∫
Ω
|f(t, x)||g(x)|dxdt

≤‖f‖L1(0,S;L2(Ω)).

This, along with (3.9), indicates∫ S

0
(S − t)3‖χQM(S − t)A−2z‖L2(Ω)dt ≥

∥∥∥∥(∫ S

0
χQ(S − t)3|M(S − t)|dt

)
A−2z

∥∥∥∥
L2(Ω)

≥ inf
x∈Ω

(∫ S

0
χQ(S − t)3|M(S − t)|dt

)
‖A−2z‖L2(Ω).

By the above, Lemma 3.2 and (1.4), we can find C2 > 0 (independent of z) so that∫ S

0
(S − t)3‖χQM(S − t)A−2z‖L2(Ω)dt ≥ C2‖A−2z‖L2(Ω) = C2‖z‖H−4 .

This, together with (3.8), leads to (3.7) and ends the proof of Lemma 3.3.

The next lemma gives a unique continuation property for the flow Φ(·). It corresponds to

the second step in the above-mentioned three-steps strategy.

Lemma 3.4. Assume that (Q,T ) satisfies MCC. If for some S ≥ T and z ∈ H−4,

Φ(S − ·)z = 0 over Q ∩
(
(0, S)× Ω

)
, (3.10)

then z = 0.
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Proof. Arbitrarily fix S ≥ T and z ∈ H−4 so that (3.10) holds. First, since z ∈ H−4, it follows

from Corollary 2.4 that

Φ(·)z ∈ C(R+;L2(Ω)). (3.11)

Next, we let {xj}Nj=1,
{
B(xj , rxj )

}N
j=1

and {Ixj}Nj=1 be given by (3.5) in the proof of Lemma 3.2.

From (3.10) and the second conclusion in (3.5), we see that for each j ∈ {1, . . . , N},

Φ(S − t)z = 0 over B(xj , rxj ) ∩ Ω, t ∈ Ixj . (3.12)

Meanwhile, since M is real analytic over R+, it follows by Proposition 2.3 that Φ(·) is real

analytic from R+ to L(H−4). This, along with (3.12), yields that for each j ∈ {1, . . . , N},

Φ(t)z = 0 over B(xj , rxj ) ∩ Ω for each t > 0.

From the above and the first conclusion in (3.5), we see

Φ(t)z = 0 over Ω for each t > 0.

This, along with (3.11), implies

Φ(t)z = 0 in L2(Ω) for each t > 0. (3.13)

At the same time, since z ∈ H−4 and {etA}t≥0 is a C0 semigroup over H−4, it follows by (2.8)

that Φ(·)z is continuous from [0,∞) to H−4. This, along with (3.13), yields z = 0. Thus, we

finish the proof of Lemma 3.4.

We are now in the position to prove Theorem 3.1, through using the compact-uniqueness

argument, as well as Lemmas 3.3-3.4.

Proof of Theorem 3.1. Arbitrarily fix S ≥ T . First of all, (3.2) is a direct consequence of

Corollary 2.4. (Here, a triangle inequality is used.) Next, we will use the well-known compact-

uniqueness argument to show (3.1). By contradiction, we suppose that (3.1) was not true. Then

there would be {ẑk}∞k=1 ⊂ L2(Ω) so that

‖ẑk‖H−4 = 1 for each k ∈ N+; lim
k→∞

∫ S

0
(S − t)3‖χQΦ(S − t)zk‖L2(Ω)dt = 0. (3.14)

From the first equality in (3.14), we can find a subsequence of {ẑk}∞k=1, still denoted in the same

manner, and ẑ ∈ H−4 so that

ẑk → ẑ weakly in H−4, as k →∞. (3.15)

Then by the second equality in (3.14), it follows that

Φ(S − ·)ẑ = 0 over Q ∩
(
(0, S)× Ω

)
.

Since ẑ ∈ H−4, we can apply Lemma 3.4 to obtain that ẑ = 0 in H−4. This, together with

(3.15), implies that lim
k→∞

‖ẑk‖H−6 = 0. Then by Lemma 3.3, as well as the second equality in

(3.14), we find that lim
k→∞

‖ẑk‖H−4 = 0, which contradicts the first equality in (3.14). Hence, (3.1)

is true. This completes the proof of of Theorem 3.1.
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4 Proofs of main theorems

We will prove Theorem 1.1 and Theorem 1.2 in separate subsections.

4.1 Proof of Theorem 1.1

To prove Theorem 1.1, we need the next Lemma 4.1.

Lemma 4.1. Assume that (Q,T ) satisfies MCC. Then for each S ≥ T and each y0 ∈ L2(Ω),

H4 ⊂ R∞M (S, y0). (4.1)

Proof. Arbitrarily fix S ≥ T , y0 ∈ L2(Ω) and y1 ∈ H4. Let

ŷ1 := y1 − y(S; y0, 0) = y1 − Φ(S)y0. (4.2)

Then by Corollary 2.4, we see

ŷ1 ∈ H4. (4.3)

Define a functional on a subspace of L1(0, S;L2(Ω)) in the manner:

F
(
χQΦ(S − ·)z

∣∣
(0,S)

)
:= 〈ŷ1, z〉L2(Ω), z ∈ L2(Ω). (4.4)

According to (4.3), (4.4) and (3.1) (in Theorem 3.1), F is well defined and linear and satisfies

the estimate:∣∣∣F(χQΦ(S − ·)z
∣∣
(0,S)

)∣∣∣ ≤ ‖ŷ1‖H4‖z‖H−4

≤ C‖ŷ1‖H4‖χQΦ(S − ·)z‖L1(0,S;L2(Ω)), when z ∈ L2(Ω),

for some C > 0 independent of z, i.e., F is bounded. Thus, we can use the Hahn-Banach

theorem and the Riesz representation theorem to get u0 ∈ L∞(0, S;L2(Ω)) so that

F
(
χQΦ(S − ·)z

∣∣
(0,S)

)
=

∫ S

0

〈
χQΦ(S − t)z, u0(t)

〉
L2(Ω)

dt, z ∈ L2(Ω).

Write ũ0 for the zero extension of u0 over R+. The above, together with Proposition 2.6, the

first equality in (2.8) and (4.4), yields

〈y(S; 0, ũ0), z〉L2(Ω) =
〈∫ S

0
Φ(S − t)(χQu0)(t)dt, z

〉
L2(Ω)

=

∫ S

0

〈
u0(t), χQΦ(S − t)∗z

〉
L2(Ω)

dt

=

∫ S

0

〈
u0(t), χQΦ(S − t)z

〉
L2(Ω)

dt = 〈ŷ1, z〉L2(Ω), when z ∈ L2(Ω),

from which, it follows that y(S; 0, ũ0) = ŷ1. This, along with (4.2), shows that y(S; y0, ũ0) = y1,

which leads to (4.1).

Hence we finish the proof of Lemma 4.1.
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We are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1. First of all, we recall that y(·; y0, u) denotes the solution to (1.1), while

z(·; y0, u) denotes the solution to (1.1) where M = 0. Arbitrarily fix 1 ≤ p ≤ +∞, S ≥ T and

y0 ∈ L2(Ω). We aim to show (1.6), i.e.,

RpM (S, y0) = Rp0(S, y0) +H4. (4.5)

The proof is organized by several steps.

Step 1. We show that for each u ∈ L1
loc(R+;L2(Ω)),

fu(·) ∈ C(R+;H4), (4.6)

where

fu(t) := y(t; y0, u)− z(t; y0, u), t > 0. (4.7)

To this end, we arbitrarily fix u ∈ L1
loc(R+;L2(Ω)). Then by (4.7), Proposition 2.6 and

Corollary 2.5, we find

fu(t) = R̃c(t,−A)A−2y0 +

∫ t

0
R̃c(t− s,−A)A−2(χQu)(s)ds, t > 0. (4.8)

Meanwhile, it follows by Corollary 2.5 that

R̃c ∈ C(R+;L(H0)) ∩ L∞loc(R+;L(H0)).

This, along with (4.8), yields that for each t2 ≥ t1 > 0,

‖fu(t1)− fu(t2)‖H4 ≤‖R̃c(t1,−A)− R̃c(t2,−A)‖L(H0)‖y0‖H0 + ‖R̃c(·,−A)‖L∞(0,t2;L(H0))

×
(∫ t1

0
‖u(t1 − s)− u(t2 − s)‖H0ds+

∫ t2

t1

‖u(t2 − s)‖H0ds
)
,

which leads to (4.6).

Step 2. We show

RpM (S, y0) ⊂ Rp0(S, y0) +H4. (4.9)

Arbitrarily fix y1 ∈ RpM (S, y0). By (1.2), there is u1 ∈ Lp(R+;L2(Ω)) so that

y1 = y(S; y0, u1) = z(S; y0, u1) +
(
y(S; y0, u1)− z(S; y0, u1)

)
.

Since z(S; y0, u1) ∈ Rp0(S, y0), the above, along with (4.6), leads to (4.9).

Step 3. We show

RpM (S, y0) ⊃ Rp0(S, y0) +H4. (4.10)
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Arbitrarily fix ŷ1 ∈ Rp0(S, y0) and ŷ2 ∈ H4. According to the definition of Rp0(S, y0) (see

(1.2) with M = 0), there is û1 ∈ Lp(R+;L2(Ω)) so that

ŷ1 = z(S; y0, û1). (4.11)

Since ŷ2 ∈ H4, we see from (4.6) that

ŷ3 := ŷ2 −
(
y(S; y0, û1)− z(S; y0, û1)

)
∈ H4. (4.12)

Since ŷ3 ∈ H4, we can apply Lemma 4.1 (where y0 = 0) to find a control û2 ∈ L∞(R+;L2(Ω)),

with û2|(S,+∞) = 0, so that ŷ3 = y(S; 0, û2). This, together with (4.12) and (4.11), yields

y(S; y0, û1 + û2) = y(S; y0, û1) + ŷ3 = ŷ2 + z(S; y0, û1) = ŷ2 + ŷ1.

Since ŷ1, ŷ2 were arbitrarily taken from Rp0(S, y0) and H4 respectively, the above leads to (4.10).

Step 4. From (4.9) and (4.10), (4.5) follows at once.

Hence, we finish the proof of Theorem 1.1.

4.2 Proof of Theorem 1.2

To show Theorem 1.2, we need the next Lemma 4.2, which gives an estimate about the heat

equation. Since we have not found it in publications, we give its detailed proof for the sake of

the completeness of the paper.

Lemma 4.2. Let B(x0, r) ⊂ Ω. Then for each s ∈ R, there exists C = C(s) > 0 so that

sup
t≥0
‖etAz‖L2(Ω\B(x0,r)) ≤ C‖z‖Hs for each z ∈ Hs

(
B(x0, r/2)

)
, (4.13)

where

Hs
(
B(x0, r/2)

)
:=
{
z ∈ Hs : supp z ⊂ B(x0, r/2)

}
.

Proof. It suffices to prove (4.13) for each s = −m with m ∈ N+. For this purpose, we arbitrarily

fix z ∈ H−m
(
B(x0, r/2)

)
. Choose {rl}2ml=1 ⊂ R+ so that

r/2 < r1 < · · · < r2m < r. (4.14)

Then we take a sequence of functions {ρl}2ml=1 ⊂ C∞0 (Rn) so that for each l ∈ {1, · · · , 2m},

ρl = 0 over B(x0, rl−1) and ρl = 1 over Rn \B(x0, rl). (4.15)

Define a sequence of functions {fl}2ml=0 in the following manner:

f0(t) := etAz, t > 0; fl(t) := ρle
tAz, t > 0, l ∈ {1, · · · , 2m}. (4.16)

The rest of the proof is organized by several steps.
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Step 1. We prove that for each χ1 ∈ C∞0 (Ω), χ2 ∈ C∞0 (Ω;Rn) and α ≥ 0, there is C =

C(χ1, χ2, α) > 0 so that

‖χ1g‖H−α−1 + ‖χ2 · ∇g‖H−α−1 ≤ C‖g‖H−α , when g ∈ H−α. (4.17)

Arbitrarily fix χ1 ∈ C∞0 (Ω) and χ2 ∈ C∞0 (Ω;Rn). We claim that for each α ≥ 0, there is

C1 = C1(χ1, χ2, α) > 0 so that

‖χ1f‖Hα + ‖div (χ2f)‖Hα ≤ C1‖f‖Hα+1 , when f ∈ Hα+1. (4.18)

When (4.18) is proved, (4.17) follows by the standard duality argument.

By the interpolation theorem in [20, Theorem 5.1], we see that in order to show (4.18), it

suffices to prove (4.18) for α = 2k with k ∈ N. To this end, we arbitrarily fix α = 2k (with

k ∈ N) and f ∈ H2k+1. Since χ1 and χ2 are compactly supported in Ω, we have

Ω1 := suppχ1 ∪ suppχ2 ⊂⊂ Ω. (4.19)

We claim that there is C2 > 0 (independent of f) so that

‖f‖H2k+1(Ω1) ≤ C2‖f‖H2k+1 . (4.20)

In fact, given h ∈ H2k+1, we have that Akh ∈ H1. From this, (2.2) and (1.4), we see

∆kh ∈ H1 = H1
0 (Ω).

Since ∆k is an elliptic operator of order 2k, the above yields that h ∈ H2k+1
loc (Ω) (see for instance

[17, Theorem 18.1.29]). Consequently, we have h|Ω1 ∈ H2k+1(Ω1). Thus, we can define a linear

map T from H1 to H2k+1(Ω1) in the following manner:

T (Akh̄) := h̄|Ω1 , h̄ ∈ H2k+1. (4.21)

By using the closed graph theorem to T , one can obtain that it is bounded. Then by (4.21),

there is C3 > 0 so that

‖h̄‖H2k+1(Ω1) ≤ C3‖Akh̄‖H1 = C3‖h̄‖H2k+1 for each h̄ ∈ H2k+1,

which leads to (4.20).

Now, by (1.4), (2.2) and (4.19), there is C4 > 0 (independent of f) so that

‖χ1f‖H2k + ‖div (χ2f)‖H2k = ‖∆k(χ1f)‖L2(Ω) + ‖∆kdiv (χ2f)‖L2(Ω) ≤ C4‖f‖H2k+1(Ω1).

The above, along with (4.20), yields (4.18) with α = 2k. This ends the proof of Step 1.

Step 2. We prove that for each l ∈ {1, · · · , 2m}, there exists Cl > 0 (independent of z) so that

‖fl‖L∞(R+;Hl/2−m) ≤ Cl‖fl−1‖L∞(R+;H(l−1)/2−m). (4.22)
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We will show (4.22) by the induction. To this end, we first show (4.22) with l = 1. Indeed,

from (4.16), one has that f1 = ρ1f0. This, along with (2.2), yields

d

dt
f1(t)−Af1(t) = F1(t), t > 0; f1(0) = 0, (4.23)

where

F1(t) := (−∆ρ1)f0 − 2∇ρ1 · ∇f0, t > 0. (4.24)

Meanwhile, it follows from (4.15) that

∆ρ1 ∈ C∞0 (Ω) and ∇ρ1 ∈ C∞0 (Ω;Rn).

From these and (4.24), we can apply (4.17) (with (χ1, χ2, α) = (∆ρ1,∇ρ1,m)) to find Ĉ1 > 0

(independent of z) so that

‖F1‖L∞(R+;H−1−m) ≤ Ĉ1‖f0‖L∞(R+;H−m). (4.25)

We now claim that there is Ĉ2 > 0 (independent of z) so that

‖f1‖L∞(R+;H1/2−m) ≤ Ĉ2‖f0‖L∞(R+;H−m). (4.26)

Indeed, from (4.23), we can find C > 0 (independent of z) so that for each t > 0,

‖f1(t)‖H1/2−m ≤
∫ t

0
‖e(t−s)A‖L(H−1−m;H1/2−m)‖F1(s)‖H−1−mds

≤
(∫ t

0

∥∥∥[(−A)3/4e(t−s)A/2
]
e(t−s)A/2

∥∥∥
L(H−1−m)

ds

)
‖F1‖L∞(R+;H−1−m)

≤
(∫ t

0
C(t− s)−3/4e−(t−s)η1/2ds

)
‖F1‖L∞(R+;H−1−m).

This, along with (4.25), leads to (4.26). So (4.22) holds for l = 1.

Next, we assume that for some l0 ∈ {1, · · · , 2m − 1}, (4.22) holds for all l ≤ l0. We aim to

prove (4.22) with l = l0 + 1. In fact, from (4.16) and (4.15), we have fl0+1 = ρl0+1fl0 . By this

and using the similar way to that used in the proof of (4.22) with l = 1, we can get (4.22) with

l = l0 + 1. This ends the proof of Step 2.

Step 3. We verify (4.13).

Since z ∈ H−m, it follows from (4.16) and (1.5) that

‖f0(t)‖H−m = ‖etAz‖H−m ≤ ‖z‖H−m , t ≥ 0.

This, together with (4.22) and (4.14)-(4.16), yields (4.13) with s = −m.

Hence, we finish the proof of Lemma 4.2.

We are now in the position to prove Theorem 1.2.
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Proof of Theorem 1.2. By contradiction, we suppose that (1.7) holds, but there is x̂ ∈ Ω so that

(t, x̂) /∈ Q for each t ∈ [0, T ].

Then one can find B(x0, r) ⊂ Ω so that

Q ∩
(
[0, T ]× Ω

)
⊂ [0, T ]×

(
Ω \B(x0, r)

)
. (4.27)

The rest of the proof is divided into the following two steps:

Step 1. We show that there is C > 0 so that

‖Φ(T )z‖L2(Ω) ≤ C‖Φ(T − ·)z‖L∞(0,T ;L2(Ω\B(x0,r))) for each z ∈ L2(Ω). (4.28)

We first claim that under the assumption (1.7), the system (1.1) is Lp-null controllable with

a cost over [0, T ], i.e., there is C > 0 so that for each y0 ∈ L2(Ω), there is uy0 ∈ Lp(0, T ;L2(Ω))

satisfying

y(T ; y0, ũy0) = 0 and ‖uy0‖Lp(0,T ;L2(Ω)) ≤ C‖y0‖L2(Ω)). (4.29)

(Here and in what follows, given a control v over [0, T ], we use ṽ to denote its zero extension

over R+.) Indeed, if we define the operator:

LT (u) := y(T ; 0, ũ), u ∈ Lp(0, T ;L2(Ω)),

then by (1.7), we have RangeΦ(T ) ⊂RangeLT . Without loss of generality, we can assume that

LT is injective, for otherwise, we can replace LT by the operator L̃T (from the quotient space

Lp(0, T ;L2(Ω))/ kerLT to L2(Ω)) which is uniquely induced by LT . Then for each y0 ∈ L2(Ω),

there is a unique uy0 so that

Φ(T )y0 = LTuy0 , i.e., y(T ; y0, ũy0) = 0. (4.30)

Meanwhile, according to the closed graph theorem, the map y0 7→ uy0 , y0 ∈ L2(Ω) is continuous.

which leads to the second inequality in (4.29). This, along with (4.30), shows (4.29).

Next, by (4.29), using the classical duality argument (see for instance [30, Theorem 1.18]),

we can obtain the following observability: there is C > 0 so that

‖Φ(T )z‖L2(Ω) ≤ C‖χQΦ(T − ·)z‖Lq(0,T ;L2(Ω)) for each z ∈ L2(Ω), (4.31)

where q is such that 1/p+ 1/q = 1.

Finally, (4.28) follows from (4.31) and (4.27).

Step 2. We make a contradiction to (4.28) by choosing a suitable sequence {zk}k≥1 in L2(Ω).

Let {hl}l∈N be given by (2.3). Then it follows by Theorem 2.1 that {hl(T )}l≥1 is not the

zero sequence. Thus, we have

J := min
{
l ∈ N+ : hl(T ) 6= 0

}
< +∞. (4.32)
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Meanwhile, we choose {εk}k≥1 ⊂ (0, r/2) and ρ ∈ C∞0 (Rn) so that

lim
k→∞

εk = 0; ‖ρ‖L2(Rn) = 1; ρ(x) = 0, |x|Rn ≥ 1. (4.33)

Define {wk}k≥1 ⊂ C∞0 (Ω) by

wk(x) := ε
−n/2
k ρ

(x− x0

εk

)
, x ∈ Ω.

From this and (4.33), one can directly check

suppwk ⊂ B(x0, r/2), ∀ k ∈ N+; ‖wk‖L2(Ω) = 1, ∀ k ∈ N+; w− lim
k→∞

wk = 0 in L2(Ω). (4.34)

Now we define the sequence {zk}k≥1 ⊂ L2(Ω) by

zk := AJ+1wk, k ≥ 1. (4.35)

Next, from (4.35) and (4.34), as well as (2.2), we see that for each l ∈ {0, 1, . . . , J + 1},

supp (A−lzk) ⊂ B(x0, r/2), ∀ k ∈ N+; lim
k→∞

zk = 0 in H−2J−4. (4.36)

Meanwhile, by Theorem 2.1 with N = J + 1, we have

Φ(t) =etA
(
Id+

J∑
l=0

pl(t)(−A)−l−1
)

+
J∑
l=0

hl(t)(−A)−l−1 +RJ+1(t,−A)(−A)−J−2

:=P(t) +H(t) + R̃(t), t > 0, (4.37)

where RJ+1(·,−A) ∈ C(R+;L(H0))
⋂
L∞loc(R+;L(H0)) is given in Theorem 2.1 with N = J + 1.

With regard to three terms on the right hand side of (4.37), we have what follows: First, from

the second conclusion in (4.36), as well as the regularity of RJ+1(·,−A), we find

lim
k→∞

sup
0≤t≤T

‖R̃(t)zk‖L2(Ω) = 0. (4.38)

Second, by the smoothing effect of {etA}t≥0, we obtain

lim
k→∞

P(T )zk = 0 in L2(Ω). (4.39)

Third, by (4.32), we have

H(T ) = hJ(T )(−A)−J−1,

which, along with (4.35) and the second equality in (4.34), yields

‖H(T )zk‖L2(Ω) = |hJ(T )| 6= 0, ∀ k ∈ N+. (4.40)

Now from (4.37), (4.38), (4.39) and (4.40), it follows that

lim
k→∞

‖Φ(T )zk‖L2(Ω) = |hJ(T )| 6= 0. (4.41)
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Finally, by (4.36) and by the iterative use of Lemma 4.2 (with z = A−lzk, l ∈ {0, · · · , J+1}),
we find

lim
k→∞

sup
0≤t≤T

‖P(t)zk‖L2(Ω\B(x0,r)) = 0. (4.42)

Meanwhile, from the first conclusion in (4.36) and the definition of H(t) (see (4.37)), we see that

for each k ∈ N+,

H(t)zk = 0 over Ω \B(x0, r), 0 ≤ t ≤ T. (4.43)

From (4.37), (4.42), (4.43) and (4.38), we obtain

lim
k→∞

sup
0≤t≤T

‖Φ(T − t)zk‖L2(Ω\B(x0,r)) = 0. (4.44)

Now, combining (4.44) and (4.41) contradicts (4.28).

Hence, we complete the proof Theorem 1.2.

5 Appendix

5.1 Several properties on reachable sets and MCC

Proposition 5.1. The following conclusions are true:

(i) The set RpM (S, y0) is a linear subspace if and only if 0 ∈ RpM (S, y0);

(ii) If RpM (S, y0) = Rp0(S, y0) +H4, then 0 ∈ RpM (S, y0);

(iii) If MCC holds for (Q,T ), then each RpM (S, y0), with S ≥ T , is a linear subspace;

(iv) MCC for (Q,T ) implies both (1.6) and (1.7);

(v) Either (1.6) or (1.7) implies MCC for (Q,T ).

Proof. Since y(S; y0, u) = y(S; y0, 0)+y(S; 0, u), it follows from (1.2) that RpM (S, y0) is an affine

space. From this, the conclusion (i) follows at once.

We next show (ii). Suppose

RpM (S, y0) = Rp0(S, y0) +H4. (5.1)

We provide two ways to show that 0 ∈ RpM (S, y0). The first way is as follows: Recall that

z(·; y0, u) denotes the solution of the controlled heat equation (i.e., (1.1) where M = 0). Then

by the smooth effect of the heat equation, we have

z(S; y0, 0) ∈ Rp0(S, y0) ∩H4,
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which, along with (5.1), yields that 0 ∈ RpM (S, y0). The second way is as follows: By the

null controllability of the pure heat equation (see for instance [10, Theorem 3.1]), there is

u ∈ Lp(R+;L2(Ω)) so that z(S; y0, u) = 0. This, along with (5.1), yields that 0 ∈ RpM (S, y0).

The conclusion (iii) follows from Theorem 1.1 and the above conclusions (ii) and (i).

The conclusion (iv) follows from Theorem 1.1 and the above conclusion (ii).

The conclusion (v) follows from Theorem 1.2 and the above conclusion (ii).

Hence, we finish the proof of Proposition 5.1.

5.2 An example on MCC

Example 5.2. Let Ω := (0, 1). Given ε ∈ (0, 1), define two functions:

fε(x) :=

{
2x, x ∈ [0, 1/2),

−2x+ 2, x ∈ [1/2, 1]
and gε(x) :=

{
2x+ ε, x ∈ [0, 1/2),

−2x+ 2 + ε, x ∈ [1/2, 1].

Take the following control region (see the following figure where ε = 0.03):

Q :=
{

(t, x) ∈ R+ × [0, 1] : fε(x) < t < gε(x)
}
.

By direct computations, we can check what follows: (i) For each T > 1, the pair (Q,T ) satisfies

MCC; (ii) By a suitable choice of ε, the cross sections of Q are allowed to have sufficiently small

lengthes; (iii) The pair (Q,T ) does not satisfy [4, Assumption 4.1]. Consequently, our MCC is

strictly weaker than [4, Assumption 4.1].
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