
On problems of dynamic optimal nodal control for
gas networks

Martin Gugat (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Chair in Applied Analysis (Alexander von Humboldt-Professorship)) joint work with
Jan Sokolowski (Systems Research Institute of Polish Academy of Sciences)
*Los Alamos National Laboratory’s (LANL)

4th Grid Science Winter School and Conference



Outline

Dynamic Compressor Optimization

Model for the flow in a natural gas pipe

Problems of dynamic optimal nodal control for gas networks: Pdyn(T )

Existence of a solution of Pdyn(T )

The optimal controls approach the set-point

Martin Gugat · On problems of optimal nodal control for gas networks January 2021 2



Inhalt

Dynamic Compressor Optimization

Model for the flow in a natural gas pipe

Problems of dynamic optimal nodal control for gas networks: Pdyn(T )

Existence of a solution of Pdyn(T )

The optimal controls approach the set-point

Martin Gugat · On problems of optimal nodal control for gas networks January 2021 3



Dynamic Compressor Optimization in Natural Gas
Pipeline Systems
is studied by TWK MAK , P V.HENTENRYCK , A ZLOTNIK, R BENT,
INFORMS J Comp., 2019.

minimize compression cost

such that
the system state, whose evolution is
governed by pdes, e.g.{

ρt + qx = 0

qt +
(

c2 ρ + q2

ρ

)
x
= −1

2 θ
q |q|
ρ

satisfies pressure constraints with a
smooth fluid flow.

Compressor stations = nodal controllers

Similar to A J OSIADACZ, M
CHACZYKOWSKI in Dynamic Control for
Gas Pipeline Systems (Archives Min. Sc.
2016), MAK ET AL. use a parabolic
model!
It is obtained by deleting qt and q2

ρ .
See also Closed loop control of gas flow
in a pipe: Stability for a transient model by
M GUGAT, F HANTE, L JIN, AUTO 2020

in DFG CRC 154-2
Here we consider the hyperbolic model!

How to avoid shocks?
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The static problem: Optimal steady gas flow

Static gas flows have been studied in
depth, see e.g.

• Networks of pipelines for gas with
nonconstant compressibility factor:
stationary states GUGAT, SCHULTZ,
WINTERGERST

• Stationary states in gas networks
GUGAT, HANTE, HIRSCH-DICK,
LEUGERING

Steady states depend
in a monotone way on
the boundary data!

For fixed(=steady) deliveries

many projects have determined optimal
gas flows, that form optimal stationary
states on the networks. However:
• Fluctuation of renewable energy

sources leads to varying demand of
gas-fired electric power plants.
• In the operation of gas networks, the

state is never stationary!
• The steady flows are used as

operating set-points.

In the hyperbolic transient model, in
general shocks can occur!

We want controls that do not generate
shocks!
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The optimal control problem

For an optimal control problem, it is
often assumed that the

initial state is known.

This is usually not true!

• In order to approximate the initial
state observers are needed!
Joint work in progress with Jan
Giesselmann: C05, TRR154!

Wikipedia, State observer
Current observation data are
continuously fed in the observer
system.

Optimal Control

As in any optimal control problem, we have
• a feasible set, defined by

1. control constraints,
2. state constraints;

• an objective function.
In the operation of gas networks, pressure
bounds are essential state constraints!
We also need constraints to avoid shocks!

The compressor cost is the essential obj.:∫ T
0

∑
v∈Vc

Av qv(t)
[(

pout,v (t)
pin,v (t)

)Rv

− 1
]

dt

(see Osiadac 2016).
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Uncertainty managemnt for time-dependent constr.
Often constraints have to hold for all t ∈ [0,T ] (like pressure bounds):

• yω(t) ≤ M for t ∈ [0, T ].

For uncertain states, they can be modeled in the probust form

• P (yω(t) ≤ M ∀t ∈ [0, T ] a.e.) ≥ p
that requires that "at least with probability p it holds for all t ∈ [0,T ]".

D. ADELHÜTTE, D. ASSMANN, T. GONZALEZ GRANDON, M. GUGAT, H. HEITSCH, R. HENRION, F. LIERS, S. NITSCHE, R. SCHULTZ, M. STINGL AND D. WINTERGERST,
Joint model of probabilistic-robust (probust) constraints with application to gas network optimization, Vietnam J. Math., 2020

• Implementations with spheric radial decomposition and kernel-density estimator
have been studied by MICHAEL SCHUSTER, ELISA STRAUCH, TRR 154.
• The probust form is similar to semi-infinite programming and equivalent to

P
(
supt∈[0,T ] yω(t) ≤ M

)
≥ p.

A much weaker form that is easier to implement is

• P (yω(t) ≤ M) ≥ p ∀t ∈ [0, T ] a.e.
that requires that "for all t ∈ [0,T ] it holds with the prescribed probability p".

L ROALD, K SUNDAR, A ZLOTNIK, S MISRA, AND G ANDERSSON, An Uncertainty Management Framework for Integrated Gas-Electric Energy Systems, 2020

Probabilistic robustness is less costly than classical robustness!

•
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Model for the flow in a single pipe

The isothermal Euler equations for
ideal gas

For a horizontal pipe,
we have{

ρt + qx = 0

qt +
(

c2 ρ + q2

ρ

)
x
= −1

2 θ
q |q|
ρ

• ρ: density
• q: flow rate
• c: sound speed
• θ = fg

δ

• fg: friction, δ: diameter

Slow flow (|q/ρ| << c)

See the results of DFG CRC 154-2

For subsonic flow, at each boundary point
one boundary condition is set.

Slow flow: Boundary conditions

In terms of the RIEMANN invariants, we
can state the boundary conditions as

R+(t , 0) = g0(t),
R−(t , L) = gL(t).
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Dynamic optimal nodal control for gas networks

Let a stationary reference solution pref (x)e, qref (x)e (e ∈ E) with constant controls
uv

ref , (v ∈ Vc = set of compressor nodes) be given.

The networked system on the graph G = (V , e) is (S):

qe(0, x) = qe
0(x), x ∈ (0, Le), e ∈ E , INITIAL CONDITIONS

ρe(0, x) = ρe
0(x), x ∈ (0, Le), e ∈ E ,

qe
out(t , x

e(v)) = qe
ref , t ∈ (0,T ), v ∈ V , e ∈ E0(v), if |E0(v)| = 1, v 6= v∗, B.COND.

pe
in(t , x

e(v)) = pe
ref , t ∈ (0,T ), v ∈ V , e ∈ E0(v), if |E0(v)| = 1, v = v∗,∑

e∈E0(v) s(v , e) (De)2 qe(t , xe(v)) = 0, t ∈ (0,T ), if |E0(v)| ≥ 2,FLOW BALANCE
p(ρe(t , xe(v))) = p(ρf (t , x f (v))), t ∈ (0,T ), if |E0(v)| ≥ 2, e, f ∈ E0(v),PRESS. CONT.

uv(t) + uv
ref =

(
pout,v (t)
pin,v (t)

)Rv

, t ∈ (0,T ), if |E0(v)| = 2, v ∈ Vc,

qe(t , xe(v))) = qf (t , x f (v))), t ∈ (0,T ), if |E0(v)| = 2, v ∈ Vc; e, f ∈ E0(v),(
ρe

qe

)
t
+

(
0 1

a2 − (qe)2

(ρe)2 2 qe

ρe

)
x

(
ρe,

qe

)
x
=

(
0

−1
2θ

e qe |qe|
ρe

)
on [0,T ]× [0, Le], e ∈ E .
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Semi-global solutions, TA-TSIEN LI

• The theory of semi-global solutions asserts that for any given time horizon T0 > 0
there exists a number ε(T0) > 0 such that for all initial states with

‖qe
0 − qref‖C1([0, Le]) ≤ ε(T0) and ‖ρe

0 − ρref‖C1([0, Le]) ≤ ε(T0) (1)

and all controls that satisfy

‖uv‖C1([0,T0]) ≤ ε(T0) (2)

and are C1–compatible with the initial state there exists a classical solution of
(S) on [0, T0] that satisfies an a priori estimate for the corresponding C1-norm.

• There exists a constant Cc > 0 such that if (1), and (2) hold for two controls u1

and u2, we have

max
e∈E
‖pe

1(t , x)−pe
2(t , x)‖C([0,T0]×[0, Le] ≤ Cc max{max

e∈E
‖ue

1−ue
2‖C([0,T0], maxv∈Vc

‖uv
1−uv

2‖C([0,T0]}

and

max
e∈E
‖qe

1(t , x)−qe
2(t , x)‖C([0,T0]×[0, Le] ≤ Cc max{max

e∈E
‖ue

1−ue
2‖C([0,T0], maxv∈Vc

‖uv
1−uv

2‖C([0,T0]}.

If T0 > 0 is chosen sufficiently small, ε(T0) can be quite large!
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Control and state constraints

• The control action in the compressor is bounded. With given minimum
compressor ratio εmin

v and maximum comp. ratio εmax
v that satisfy

1 ≤ εmin
v ≤ εmax

v

we have the control constraint constraints

εmin
v ≤ uv(t) + uref ≤ εmax

v (3)

that gives bounds on the compression ratio. In practice we admit that εmin
v > 1.

In this case, we assume that the compressor is switched on.

• In the operation of gas networks, the pressure should remain between given
bounds

pmin < pmax.

In our optimal control problem this will be taken into account in the cost functional
by a penalty term in the form

ηp

∑
e∈E

‖(pmin − pe(t , x))+‖C([0,T ]×[0,Le]) + ‖(pe(t , x)− pmax)+‖C([0,T ]×[0,Le])

that penalizes a violation of the pressure bounds.
Here ηp > 0 is a penalty parameter and (r )+ = max{r , 0}.
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State and Control Constraints:
Make sure that the state remains smooth!
Let a time T0 > 0 be given.

• We have seen that due to the theory of semi-global solutions we can choose
ε = ε(T0) > 0 sufficiently small such that controls u that satisfy the control
constraint

max
t∈[0,T ]

max
v∈Vc

{|uv(t)|, |∂tuv(t)|} ≤ ε(T0) (4)

generate a classical solution of the system equation on [0, T0].
• In order to make sure that a regular solution exists on [0, T ] we prescribe in

addition for all e ∈ E the state constraints

max
t∈[0,T−T0]

max
x∈[0,Le]

{|pe(t , x)−pe
ref (x)|, |q

e(t , x)−qe
ref (x)|, |∂tpe(t , x)|, |∂tqe(t , x)|} ≤ ε(T0).

(5)
Here qref and pref denote a stationary reference state that is a classical steady
state of the pde that is time-independent and is compatible with the boundary
conditions, the node conditions and a feasible stationary compressor control uref .
Moreover, we assume that qref and pref satisfy the state constraints and are
compatible with the initial conditions, so that the feasible set is non-empty.

The state constraint (5) allows to make the time horizon T arbitrarily large!
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The optimal control problem

Let a Banach space X (T ) ⊂
(
C1([0, T ])

)|Vc| be given.

As examples, think of X (T ) =
(
H2(0, T )

)|Vc| or X (T ) =
(
W 2,∞(0, T )

)|Vc|.
We assume that for all e ∈ E the initial state (qe

0 , ρ
e
0) ∈ C1([0, Le]) of the system is

given and satisfies (1).
• First, we define the set U(T ) of feasible controls. The set U(T ) contains the
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The optimal control problem

• The goal of the control problem is to have a control with minimal control cost
such that a regular state without shocks or other singularities is generated by
the state equation.

• For the operation of gas networks it is important to remain within the scenario of
classical solutions in order to avoid damages in the system caused by shocks.
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Existence of a solution of Pdyn(T )

Assumption on X (T ) and a seminorm ‖ · ‖X (T ) :

Every sequence of controls in the admissible set U(T ) that is bounded w.r.t. ‖ · ‖X (T )

contains a subsequence that converges strongly in
(
C1([0, T ])

)|Vc|.

This holds for X (T ) =
(
H2(0, T )

)|Vc| and the seminorm ‖u‖X (t) = ‖u′′‖L2(0,T ) or

X (T ) =
(
W 3,1(0, T )

)|Vc|.

Also for X (T ) =
(
W 2,∞(0, T )

)|Vc|. For the latter space, we introduce a special norm
that depends on a parameter n ∈ {1, 2, 3, ...}. It is defined as

‖u‖n =

n∑
j=1

∑
v∈Vc

‖(uv
opt)

′′‖L∞( j−1
n T , j

nT ) + ‖u
v
opt‖L∞( j−1

n T , j
nT ). (7)

Theorem (Let T > T0 > 0 be given. )

A solution of the dynamic optimal control problem Pdyn(T ) with ε = ε(T0)
in (4) and (5) does exist.
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Existence of a solution of Pdyn(T )

Due to the second order regularization term the existence of optimal controls
that generate a smooth flow can be shown! (Despite of the product in J(u).)

The proof for the existence of optimal controls

can be adapted to problems with time-periodic controls and states as considered in
Dynamic Compressor Optimization in Natural Gas Pipeline Systems
by TWK Mak , P v.Hentenryck , A Zlotnik, R Bent, INFORMS J. Comp., 2019,
but with a hyperbolic pde!
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The optimal controls approach the set-point

For j ∈ {1, 2, ..., n − 1} define the interval I j = ( j−1
n T , j

n T ).

We say that the optimal control uopt 6= 0 satisfies Property A

if there exist an integer js ∈ {1, 2, ..., n − 1} and a point t0 ∈ I∗ = I js such that
js−1

n T ∈ [T − T0,T ) and the following conditions hold with

I0 = (t0,
js
n

T ) :

We have uopt |I0 = 0 or (if ‖uopt‖L∞(I0) > 0) we have the inequalities
1. ‖u′′opt‖L∞(I0) < ‖u′′opt‖L∞(I∗),
2. ‖u′opt‖L∞(I0) < ‖u′opt‖L∞(I∗),
3. ‖uopt‖L∞( js−1

n T , t0+ts
2 )

< ‖uopt‖L∞(I∗).

Note that the inequalities with ≤ always hold.
If all components of uopt are decreasing, 3. is violated.
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The optimal controls approach the set-point

Now we state our result about the structure of the optimal controls.

Theorem

Let T > T0 be given. Let n ∈ {1, 2, ...} be given such that n > T
T0
.

Let X (T ) =
(
W 2,∞(0, T )

)|Vc| with the norm ‖ · ‖X (T ) = ‖ · ‖n as defined in (7).

If the penalty parameter γ > 0 is sufficiently large,
for any optimal control uopt that solves the dynamic optimal control problem Pdyn(T )
and satisfies Property A
there exists a number t∗ ∈ (0, T ) such that for all t ∈ [t∗, T ] we have

uopt(t) = 0.
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Terminal slide

In the proof, a W 2,∞ variation of the control is used. It is obtained by multiplying the

control uopt with a function of this form:

• Future work along the same path:
1. Numerical results; collab?
2. Include probabilistic constraints? (see M. GUGAT,

A turnpike result for convex hyperbolic optimal boundary control problems,
Pure and Applied Functional Analysis 4, 849-866, 2019.)

• Thank you for your attention!
Next time biking in Pipeline Rd Los Alamos, NM 87544, USA!
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