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Abstract

This paper presents, using dynamical system theory, a framework for investigating the turnpike property in nonlinear optimal
control. First, it is shown that a turnpike-like property appears in general dynamical systems with hyperbolic equilibrium
and then, apply it to optimal control problems to obtain sufficient conditions for the turnpike to occurs. The approach taken
is geometric and gives insights for the behaviors of controlled trajectories as well as links between the turnpike and stability
and/or stabilizability in nonlinear control theory. It also allows us to find simpler proofs for existing results on the turnpike
properties. Attempts to remove smallness restrictions for initial and target states are also discussed based on the geometry
of (un)stable manifolds and a recent result on exponential stabilizability of nonlinear control systems obtained by one of the
authors.
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1 Introduction

The turnpike property was first recognized in the con-
text of optimal growth by economists (see, e.g., [32]).
The turnpike theorems say that for a long-run growth,
regardless of starting and ending points, it will pay
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to get into a growth phase, called von Neumann path,
in the most of intermediate stages. It is exactly like a
turnpike and a network of minor roads; "if origin and
destination are far enough apart, it will always pay to
get on the turnpike and cover distance at the best rate
of travel ..." (quoted from [11]).

In control theory, independently of the turnpike theo-
rems in econometrics, this property was investigated
as dichotomy in linear optimal control [52,42] and later
extended to nonlinear systems [1]. In optimal control,
the turnpike property essentially means that the solu-
tion of a large finite horizon optimal control problem is
determined by the system and cost function and inde-
pendent of time intervals, initial and terminal condi-
tions except in the thin layers at the beginning and the
end of the time interval (see, e.g., [6,55,41]). In the last
decades, much progress has been made in the theory
of turnpike for finite or infinite dimensional and linear
or nonlinear control systems. In [39], the authors study
the turnpike for linear finite and infinite dimensional
systems and derive a simple but meaningful inequal-
ity, which we term turnpike inequality. Their works are
extended to finite-dimensional nonlinear systems [49],
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the semi-linear heat equation [40], the wave equation
[22,56], periodic turnpike for systems in Hilbert spaces
[48], optimal shape design [27], optimal boundary con-
trol for hyperbolic systems [21] and general evolution
equations [20]. The turnpike property draws attentions
of system theory researchers from the viewpoints of
model predictive control [17,12], dissipative systems
(see, e.g., [53,54]) [4,9,14,18,19], mixed-integer optimal
control [15], mechanical systems [13] and the maxi-
mum hands-off control [33,45]. The turnpike attracts
attentions in control theory since it often reveals an es-
sential structure of the optimal control problem under
consideration and leads to a significant simplification
or a useful approximation of the problem. From this
point of view, one of the issues in investigating the
turnpike is to give conditions under which the occur-
rence of the turnpike is assured. Especially, it is im-
portant to know how large initial states and terminal
states can be taken for the turnpike to occur. The ap-
proach based on dissipative system theory is shown to
be effective from these perspectives.

In this paper, we first show that turnpike-like behav-
iors naturally appear in general dynamical systems
with hyperbolic equilibrium. The main technique we
use is the λ-lemma which describes trajectory behav-
iors near invariant manifolds such as stable and unsta-
ble manifolds. That the turnpike-like inequality holds
implies that if one fixes two ends of a trajectory close to
stable and unstable manifolds and designates the time
duration sufficiently large, then the trajectory necessar-
ily converges to these manifolds to spend the most of
the time near the equilibrium. This is exactly the turn-
pike property. It should be noted that the two ends, as
long as they are close to the manifolds, do not need to
lie in the vicinity of the equilibrium. Using this prop-
erty of hyperbolic dynamical systems, we try to render
the problem of determining the domains of initial and
terminal states for the turnpike to occur into the size
and geometries of the stable and unstable manifolds.

We apply the turnpike-like inequality to a class of op-
timal control problems in which terminal states are not
specified and the steady state optimal solutions are not
the origin as in [39,40,56,48] as well as to a class of op-
timal control problems in which two terminal states
are specified and the steady state optimal point is the
origin as in [52,1,49]. For both classes of problems,
we employ a Dynamic Programming approach with
Hamilton-Jacobi equations (HJEs). The characteristic
equations for HJEs are Hamiltonian systems and the
stabilizability (controllability for the second class) and
detectability conditions assure that the equilibrium of
the Hamiltonian systems is hyperbolic. The controlled
trajectories appear in these Hamiltonian systems and
we apply the turnpike result for dynamical system.
Then, the existence of the trajectory satisfying initial
and boundary conditions is guaranteed. In this paper,
we derive sufficient conditions for optimality by using

the Dynamic Programming and HJEs and by impos-
ing a condition that guarantees the existence of the so-
lution to the HJEs (Lagrangian submanifold property,
see, e.g., [30, page 93]).

The present manuscript expands upon our conference
contribution [46] incorporating a new result on the re-
lationship between nonlinear stabilizability and the ex-
istence of infinite horizon optimal control [44]. It al-
lows one to give an estimate of the existence region
of a stable manifold of hyperbolic Hamiltonian sys-
tem associated with an optimal control problem, from
which one may be able to predict the occurrence of
turnpike (see Section 4.2). This prediction exactly fol-
lows the procedure of rendering the turnpike analysis
into the geometries of stable and unstable manifolds
developed in § 2.The manuscript also contains exam-
ples worked out to show how the proposed geometric
approach is effectively applied for the turnpike analy-
sis and appendices for necessary results in the theory
of algebraic Riccati equations and for stable manifold
estimate in Hamiltonian systems.

The organization of the paper is as follows. In Section 2
we review key tools from dynamical system theory and
derive the turnpike inequality. In Section 3, we apply
it to optimal control problems. Section 3.1 handles the
problem where terminal state is free and Section 3.2
handles the problem where initial and terminal states
are fixed. Section 4 shows turnpike analyses for a class
of nonlinear systems for which target z in (OCP1) can
be taken arbitrarily large and a class of nonlinear sys-
tems for which initial states can be taken arbitrarily
large. Section 5 discusses possible extensions for more
general turnpike using the geometric approach.

2 Turnpike in dynamical systems

Let us consider a nonlinear dynamical system of the
form

ż = f(z), (1)
where f : RN → RN is of Cr class (r > 1). We assume
that f(0) = 0 and hyperbolicity of f at 0, namely, assume
that Df(0) ∈ RN×N has k eigenvalues (0 < k < N )
with strictly negative real parts and N −k eigenvalues
with strictly positive real parts.

It is known, as the stable manifold theorem, that there
exist Cr manifolds S and U , called stable manifold and
unstable manifold of (1) at 0, respectively, defined by

S := {z ∈ RN |ϕ(t, z)→ 0 as t→∞},
U := {z ∈ RN |ϕ(t, z)→ 0 as t→ −∞},

where ϕ(t, z) is the solution of (1) starting z at t = 0.
Let Es, Eu be stable and unstable subspaces in RN
of Df(0) with dimension k, N − k, respectively. It is
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known that S, U are invariant under the flow of f and
are tangential toEs,Eu, respectively, at z = 0. See, e.g.,
[23, § III.6] and [35, Chapter 2, § 6] for more details on
the theory of stable manifold.

We will consider limiting behavior of submanifolds
under the flow of f and need to introduce topology
for maps and manifolds. Let M be a compact manifold
of dimension m and the space Cr(M,Rl) of Cr maps,
0 6 r <∞, defined on M . There exists a natural vector
space structure on Cr(M,Rl). Since M is compact, we
take a finite cover of M by open sets V1, . . . , Vk and
take a local chart (zi, Ui) forM with zi(Ui) = B(2) such
that zi(Vi) = B(1), i = 1, . . . , k, where B(1) and B(2)
are the balls of radius 1 and 2 at the origin of Rm. For
a map g ∈ Cr(M,Rl), we define a norm by

‖g‖r := max
i

sup{|g(u)|, ‖Dgi(u)‖, . . . ,
‖Drgi(u)‖ |u ∈ B(1)},

where gi = g ◦ zi−1, local representation of g, and ‖ · ‖
is a norm for linear maps. It is known that ‖ · ‖r does
not depend on the choice of finite cover (see [35, page
20]) and we call it Cr norm. For maps in Cr(M,N)
where N is a manifold, we embed N in a Euclidean
space with sufficiently high dimension. Let L, L′ be Cr
submanifolds of M and let ε > 0. We say that L and
L′ are ε Cr-close if there exists a Cr diffeomorphism
h : L→ L′ such that ‖i′ ◦h− i‖r < ε, where i : L→M
and i′ : L′ → M are inclusion maps. In this case, we
use the notation drL(L′) := ‖i′ ◦ h− i‖r.

By a k-dimensional (topological) disc we mean a
set that is homeomorphic to Dk := {(x1, . . . , xk) ∈
Rk |x2

1 + · · ·+x2
k 6 1}. The following lemma is known

as the λ-lemma or inclination lemma and plays a cru-
cial role in the theory of dynamical systems (see [35,
Chapter 2, § 7] and [51, § 5.1]).

Lemma 1 (The λ-lemma) Suppose that z = 0 is a hyper-
bolic equilibrium for (1). Suppose also that S and U are k,
(N − k)-dimensional stable and unstable manifolds of f at
0, respectively. For any (N − k)-dimensional disc B in U ,
any point z ∈ S, any (N−k)-dimensional disc D transver-
sal to S at z and any ε > 0, there exists a T > 0 such that
if t > T , ϕ(t,D) contains an (N − k)-dimensional disc D̃
with d1

B(D̃) < ε.

Next, we show that the turnpike behavior appears in the
transition of points near the stable manifold to points
near the unstable manifold if the transition duration
is designated large. Let z0 ∈ S and z1 ∈ U be arbi-
trary given points. From the stable manifold theorem,

it holds that

|ϕ(t, z0)| < Ke−µt for t > 0, (2a)
|ϕ(t, z1)| < Keµt for t 6 0, (2b)

where K > 0 is a constant dependent on z0 and z1 and
µ > 0 is a constant independent of z0 and z1.

Proposition 2 Suppose that z = 0 is a hyperbolic equilib-
rium for (1). Let S and U be the stable manifold of dimen-
sion k and the unstable manifold of dimension N − k at
z = 0, respectively. Take z0, z1, K and µ satisfying (2).

(i) There exists a T0 > 0 such that for every T > T0 there
exists a ρ = ρ(T ) > 0 such that

|ϕ(t, y)| < Ke−µt for t ∈ [0, T ], y ∈ B(z0, ρ),

where B(z0, ρ) is the N -dimensional open ball cen-
tered at z0 with radius ρ. Moreover, ρ→ 0 as T →∞.

(ii) There exist a T0 < 0 such that for every T < T0 there
exists a ρ = ρ(T ) > 0 such that

|ϕ(t, y)| < Keµt for t ∈ [T, 0], y ∈ B(z1, ρ).

Moreover, ρ→ 0 as T → −∞.
(iii) For any (N − k)-dimensional disc D̄ transversal to S

at z0 and any k-dimensional disc Ē transversal to U at
z1, there exists a T0 > 0 such that for any T > T0 there
exist (N − k)-dimensional disc D ⊂ D̄ transversal to
S at z0 and k-dimensional disc E ⊂ Ē transversal to
U at z1 such that ϕ(T,D) intersects ϕ(−T,E) at a
single point.

Proof. (i) Suppose that the first statement is false.
Then, there exist a T > 0 such that for all n ∈ N,
there exist tn ∈ [0, T ] and yn ∈ B(z0, 1/n) such that
|ϕ(tn, yn)| > Ke−µtn holds for n ∈ N. Taking a subse-
quence, we may assume that tn → τ ∈ [0, T ] as n→∞.
This implies that |ϕ(τ, z0)| > Ke−µτ , which contradicts
(2a). For the second statement, we prove the following.
For any ε > 0, there exists a Tε > 0 such that for any
T > Tε, if |ϕ(t, y)| < Ke−µt for t ∈ [0, T ], y ∈ B(z0, ρ),
then, ρ necessarily satisfies ρ < ε. If this is not true,
then, there exist ε0 > 0 and ρ > ε0 such that for any
T > 0, |ϕ(t, y)| < Ke−µt for t ∈ [0, T ], y ∈ B(z0, ρ). But,
this means that B(z0, ρ) ⊂ S, which contradicts that
the dimensions of B(z0, ρ) and S are N and k(< N),
respectively.

(ii) Proof is the same as (i).

(iii) First we take an (N − k)-dimensional disc U0 in U
passing through 0, a k-dimensional disc S0 in S passing
through 0 and an ε > 0 arbitrarily. From the λ-lemma,
there exists a T0 > 0 such that for any T > T0 there ex-
ists an (N − k)-dimensional disc D ⊂ D̄ transversal to
S at z0 and a k-dimensional disc E ⊂ Ē transversal to
U at z1 such that d1

U0
(ϕ(T,D)) < ε, d1

S0
(ϕ(−T,E)) < ε.
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Since Es ∩Eu = {0}, it is possible to take ε, S0 and U0

so that ϕ(T,D) intersects ϕ(−T,E) at a single point. �

Remark 1 It should be noted that the above statements,
especially (i) and (ii), are only on finite interval [0, T ]. This
is the major difference from the trajectories on the stable and
unstable manifolds.

Theorem 3 Suppose that z = 0 is a hyperbolic equilibrium
for (1). Let S and U be the stable manifold of dimension
k and the unstable manifold of dimension N − k at z =
0, respectively. For any z0 ∈ S, any z1 ∈ U , any (N −
k)-dimensional disc D̄ transversal to S at z0 and any k-
dimensional disc Ē transversal to U at z1, there exists a
T0 > 0 such that for every T > T0 there exist ρ = ρ(T ) >
0, y0 ∈ B(z0, ρ) ∩ D̄ and y1 ∈ B(z1, ρ) ∩ Ē such that
ϕ(T, y0) = y1 and

|ϕ(t, y0)| < K
[
e−µt + e−µ(T−t)

]
for t ∈ [0, T ].

Moreover, ρ→ 0 as T →∞.

Proof. Take the largest T0 and the smallest ρ in Propo-
sition 2. We rename this T0 as T0/2. Take arbitrary
T > T0 and use Proposition 2-(iii) to get a discD which
is (N − k)-dimensional and transversal to S at z0 and
a disc E which is k-dimensional and transversal to U
at z1 satisfying D ⊂ B(z0, ρ) and E ⊂ B(z1, ρ). This
is possible by taking smaller S0 and U0 in the proof
of Proposition 2-(iii). Then, there exists a single point
ζ such that ϕ(T/2, D) ∩ ϕ(−T/2, E) = {ζ} (see Fig 1).
Let y0 := ϕ(−T/2, ζ). Then, y0 ∈ D ⊂ B(z0, ρ) and by
Proposition 2-(i), we have

|ϕ(t, y0)| < Ke−µt for 0 6 t 6 T/2. (3)

Let y1 := ϕ(T/2, z). Then, y1 ∈ E ⊂ B(x1, ρ) and

|ϕ(t, y1)| < Keµt for − T/2 6 t 6 0.

This shows that

|ϕ(t+ T, y0)| < Keµt for − T/2 6 t 6 0,

and consequently,

|ϕ(t, y0)| < Ke−µ(T−t) for T/2 6 t 6 T. (4)

Combining (3) and (4), we get the inequality in the
theorem. The last assertion follows from Proposition 2-
(i) and (ii). �

3 Turnpike in nonlinear optimal control

Let us consider a nonlinear control system

ẋ = f(x) + g(x)u, x(t0) = x0, (5)

B(z0, ρ)

z0

B(z1, ρ)

y1

z1
E

y0

D

ϕ(T/2, D)

ϕ(−T/2, E)

S

0

U

ζ

Fig. 1. A scheme of the proof of Theorem 3

where f : Rn → Rn, g : Rn → Rn×m are of C2 class
with f(0) = 0, x(t) ∈ Rn is the state and u(t) ∈ Rm is
the control input. LetL : Rn×Rm → R be aC2 function
of x and u. An optimal control problem or OCP is to
find a control input for (5) such that the cost functional

J(u) =

∫ T

0

L(x(t), u(t)) dt

is minimized, where we set J(u) = +∞ when the ex-
istence domain of solution for (5) is strictly contained
in [0, T ). There are several types in OCPs depending
on whether or not the terminal time T is specified and
whether or not the state variables are specified at the
terminal time. In this paper, we consider OCPs where
the terminal time T is specified and two types of OCPs;
one in which the state variables are free at t = T and
another in which they are fixed at t = T . For both types
of OCPs, we are interested in the relationship between
the solution uT and corresponding trajectory xT of an
OCP and steady state optimal pair (ū, x̄), which will
be defined more precisely later on.

Definition 1 [6]An optimal pair (uT , xT ) has the turn-
pike property if for any ε > 0, there exists an ηε > 0 such
that

|{t > 0 | |uT (t)− ū|+ |xT (t, x0)− x̄| > ε}| < ηε

for all T > 0, where ηε depends only on ε, f , g, x0,
and L and | · | denotes length (Lebesgue measure) of
interval.

Definition 2 An optimal pair (uT , xT ) satisfies the (ex-
ponential) Turnpike inequality if xT and uT satisfy

|uT (t)− ū|+ |xT (t, x0)− x̄| < K
[
e−µt + e−µ(T−t)

]
(6)

for t ∈ [0, T ] and for some constants K > 0 and µ > 0
independent of T .

Remark 2 Inequality (6) means that when T is large,
uT (t) and xT (t, x0) are exponentially close to ū and x̄
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for most of the time in [0, T ] except at the beginning
and the end of [0, T ]. It is thus sometimes called expo-
nential turnpike inequality. It is known that the turn-
pike inequality is a sufficient condition for the turnpike
property in Definition 1. Also, it should be noted that
requiring (6) limits ourselves to the exponential input-
state turnpike defined in [19].

3.1 The OCP with state variables unspecified at the ter-
minal time

For system (5), we consider the following cost func-
tional

J1(u) =
1

2

∫ T

0

|Cx(t)− z|2 + |u(t)|2 dt,

where C ∈ Rr×n and z ∈ Rr is a given vector (target).
We call this problem (OCP1)T ;

(OCP1)T : Find a control u ∈ L∞(0, T ;Rm) such that
J1(u) along (5) is minimized over all
u ∈ L∞(0, T,Rm).

Associated with (OCP1)T , we consider a steady state
optimization problem

(SOP) : Minimize Js(x, u) =
1

2
(|Cx− z|2 + |u|2)

over all (x, u) ∈ Rn × Rmsuch that
f(x) + g(x)u = 0.

We assume the following.

Assumption 1 (SOP) has a solution (x̄, ū) = (x̄(z), ū(z)).

Also, associated with (OCP1)T , we can derive a
Hamilton-Jacobi equation

Vt(t, x) + Vx(t, x)f(x)

− 1

2
Vx(t, x)g(x)g(x)>Vx(t, x)> +

1

2
|Cx− z|2 = 0,

(7)
Vx(T, x) = 0, (8)

for V (t, x), where Vt = DtV , Vx = DxV . Defining a
Hamiltonian

H(x, p) = p>f(x)− 1

2
p>g(x)g(x)>p+

1

2
|Cx− z|2,

we consider the corresponding characteristic equation
for (7)-(8)

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, i = 1, . . . , n (9)

with pi(T ) = 0, i = 1, . . . , n.Note that since the system
(5) is time-invariant, the equation corresponding to Vt
is not necessary. The right side of (9) is denoted as
XH(x, p; z), which is called Hamiltonian vector field
associated with H . If one tries to solve (SOP) using the
Lagrange multiplier method, it is necessary to solve

∂HL

∂x
= 0,

∂HL

∂u
= 0,

∂HL

∂p
= 0,

where HL(x, u, p) = p>(f(x) + g(x)u) + 1
2 (|u|2 + |Cx−

z|2). One then immediately obtains XH(x, p; z) = 0,
obtaining the following fact.

Fact. A solution (x̄(z), ū(z)) of (SOP) corresponds to
an equilibrium point (x̄(z), p̄(z)) of (9) with ū(z) =
−g(x̄(z))>p̄(z).

LetAz = DxDpH(x̄(z), p̄(z)) = Df(x̄(z),Bz = g(x̄(z)).

Assumption 2 (Az, Bz) is stabilizable and (C,Az) is de-
tectable.

Under Assumptions 1, 2, the equilibrium (x̄, p̄) is a
hyperbolic equilibrium for the Hamiltonian system (9)
(see [26, Lemma 8]) and there exist stable and unstable
manifolds for (9) at (x̄, p̄) which are expressed as

Sz = S̃ + {(x̄, p̄)}, Uz = Ũ + {(x̄, p̄)}. (10)

Here, S̃, Ũ are the stable and unstable manifold of (9)
in the coordinates (x̃, p̃), where x̃ = x − x̄, p̃ = p − p̄,
which is re-written as

d

dt

[
x̃

p̃

]
=

[
Az −BzB>z
−C>C −A>z

][
x̃

p̃

]
+ o(|x̃|+ |p̃|).

We can now state the main theorem of this subsection.
Let π1 : (x, p) 7→ x, π2 : (x, p) 7→ p be canonical projec-
tions.

Theorem 4 Under Assumptions 1, 2, suppose that
x0 ∈ Int(π1(Sz)), where Int(·) is the interior of a set
in Rn, and that Uz intersects p = 0 transversally. If T
is taken sufficiently large, then there exists a solution
(xT (t, x0), pT (t, x0)) to (9) satisfying xT (0, x0) = x0 and
pT (T, x0) = 0. If, moreover,

detDx0
xT (t, x0) 6= 0 for t ∈ [0, T ], (11)

then
uT (t) := −g(xT (t, x0))>pT (t, x0)

is the local optimal solution for (OCP1)T and turnpike in-
equality (6) holds for some constants K > 0 and µ > 0
which are independent of T .
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Proof. Let ζ0 = (x0, 0) and ζ1 = (x1, 0), where
(x1, 0) ∈ Uz and taken-dimensional discs {(x0, p) | |p| <
ρ}, {(x, 0) | |x − x1| < ρ}, which correspond to z0, z1,
B(z0, ρ) ∩ D̄ and B(z1, ρ) ∩ Ē in Theorem 3, respec-
tively. Then the theorem implies that for a sufficiently
large T > 0, there exist ρ = ρ(T ) > 0, p0 and x′1 with
|p0| < ρ, |x′1 − x1| < ρ such that

ϕ(T, (x0, p0)) = (x′1, 0),

where ϕ(t, (x0, p0)) denotes the solution of (9) starting
from (x0, p0). This shows that the two-point bound-
ary value problem associated with (OCP1)T has been
solved. Let (xT (t, x0), pT (t, x0)) = ϕ(t, (x0, p0)). Then,
the theorem also says that there exist K ′ > 0 and µ > 0
such that

|xT (t, x0)− x̄|+ |pT (t, x0)− p̄| < K ′[e−µt + e−µ(T−t)]

for 0 6 t 6 T.

Since |uT (t) − ū| 6 sup ‖g(x)‖|p(t, x0) − p̄|, (6) holds
with K = 2K ′(1 + sup ‖g(x)‖), where supremum is
taken along the trajectory. The condition (11) guaran-
tees that there exists a C1 Lagrangian submanifold in
a neighborhood of this trajectory whose projection to
the x-space is surjective at each point of the trajectory
and this implies the existence of a C2 solution V (t, x)
to (7)-(8) in the neighborhood. This is proved using
generating function theory for Lagrangian submani-
fold (see e.g. [30, page 93 and § 2 of Appendix 7] or
[50]). Then, the verification theorem in Dynamic Pro-
gramming (see, e.g., [2, Theorem 5-12 on page 357])
shows that the control u∗ is locally optimal. �

Remark 3 The condition (11) guarantees that the so-
lution V to (7) exists in a neighborhood of the trajec-
tory (xT (t, x0), pT (t, x0)), 0 6 t 6 T . The optimality of
uT is valid only in the neighborhood. When one seeks
for larger domain of existence, the non-uniqueness and
non-smoothness issues of solution arise, which require
the notion of viscosity solutions [3,7]. We also refer to
[10] for general analysis of non-unique solutions and
[34,24,25] for multiple locally optimal solutions for me-
chanical systems.

We next show that for small x0, z, (OCP1)T has a solu-
tion with turnpike property using perturbation theory
of stable manifold. Let A = Df(0)(= A0), B = g(0)(=
B0).

Assumption 3 (A,B) is stabilizable and (C,A) is de-
tectable.

Fact. Under Assumption 3, there is a neighborhood of
z = 0 in Rr such that (SOP) has a unique solution for
z in the neighborhood and (Az, Bz) is stabilizable and
(C,Az) is detectable..

Proof. Consider an equation XH(x, p; z) = 0. From

DXH(0, 0; 0) =

[
A −BB>

−C>C −A>

]
,

the stabilizability of (A,B) and the detectability of
(C,A), DXH(0, 0; 0) has no eigenvalues on the imagi-
nary axis (see [26, Lemma 8]). Therefore, by the implicit
function theorem, a unique solution x̄(z), p̄(z) for the
equation exists for all z in a neighborhood of z = 0 and
x̄(z), p̄(z) are C1 functions of z and thus, so are Az and
Bz . For j = 1, · · · , n, let λj(z) be the j-th eigenvalue of
Az , which is continuous in z. Define rj(z) by

rj(z) = rank

[
C

λj(z)I −Az

]
.

The detectability of (C,A) implies rj(0) = n for j =
1, · · · , n. It is known that the matrix rank is lower semi-
continuous in its entries (see, e.g., [29] for a proof).
Therefore rj(z) is lower semicontinuous in z and hence
rj(z) = n for j = 1, · · · , n in a neighborhood of z = 0,
from which the detectability of (C,Az) is proved. The
stabilizability of (Az, Bz) is proved in the same man-
ner. �

From this Fact, Assumption 3 implies that Assump-
tions 1, 2 hold in a neighborhood of z = 0.

Corollary 5 Under Assumption 3, for sufficiently small x0

and z and for sufficiently large T , (OCP1)T has a solution
with the turnpike property.

Proof. From the Fact above, under Assumption 3, the
Hamiltonian system (9) has stable manifold Sz and un-
stable manifold Uz at (x̄, p̄). For z = 0 the linear part
of the Hamiltonian system is Ham =

[
A −BB>

−C>C −A>

]
,

for which we apply the eigen structure analysis in Ap-
pendix A. Apply Lemma A.1 with R = BB>, Q =
C>C and let P and L as in the Appendix. Then, the
tangent spaces T0S0, T0U0 of S0, U0 at the origin can
be written as

T0S0 = {(u, Pu) |u ∈ Rn},
T0U0 = {(Lu, (PL+ I)u) |u ∈ Rn}.

From the expression of T0S0, one can take x0 suffi-
ciently small so that there is an n-dimensional disc D0

in S0 that contains the origin and x0 in its interior. From
Lemma A.2, PL+I is nonsingular and therefore, T0U0

intersects p = 0 transversally, which implies that there
is an n-dimensional disc E0 in U0 that intersects p = 0
transversally. As z → 0, the Hamiltonian vector field
(9) or XH(x, p, z) can be arbitrarily close to XH(x, p; 0)
in the C1 topology in an appropriate compact set. The
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stable manifold theory (see, e.g., [35, Theorem 6.2]) en-
sures that there exists a small z so that there are n-
dimensional discs Dz ⊂ Sz , Ez ⊂ Uz that are close
enough to D0, E0, respectively, in the C1-topology. For
this z, it holds that x0 ∈ Int(π1(Dz)) and Ez intersects
p = 0 transversally. Now, all the hypotheses in Theo-
rem 4 are satisfied. �

Next corollary is proved in [39,48] in the study of the
turnpike property for infinite dimensional systems un-
der slightly more restrictive conditions (controllability
and observability rather than stabilizability and de-
tectability). Their proofs are based on the estimates on
adjoint variables in the linear Hamiltonian system (9)
which is derived as a necessary condition of optimal-
ity. Here, we give an alternative proof using the geo-
metric picture in Theorem 4.

Corollary 6 Suppose that the system (5) is linear, that is,
f(x) = Ax and g(x) = B with real constant matrices A ∈
Rn×n and B ∈ Rn×m. Under Assumption 3, (OCP1)T
has the global solution u∗(t), 0 6 t 6 T for any z ∈ Rr.
Moreover, turnpike inequality (6) holds.

Proof. We use some of the notations from the proof
of Corollary 5. The unique solution (x̄, p̄) to (SOC) is
expressed as

[
x̄
p̄

]
= −Ham−1

[
0

C>z

]
. Uz and Sz in (10)

can be written as

Sz = {(u, Pu) |u ∈ Rn}+ {(x̄, p̄)},
Uz = {(Lu, (PL+ I)u) |u ∈ Rn}+ {(x̄, p̄)}.

It is readily seen that x0 ∈ Int(π1(S)) for any x0 ∈
Rn and U intersects p = 0 transversally for any z ∈
Rr. The condition (11) is equivalent to the nonsingu-
larity of (1,1)-block in exp[tHam], which is proved in
Lemma A.3. �

Remark 4 (1) Although the problem in Corollary 6
is linear, it is not an easy task to explicitly write
down the solution for (7)-(8) except for z = 0. This
corollary, however, says that the solution globally
exists.

(2) As is discussed in [40,49,37], relaxing the small-
ness conditions in Corollary 5 is one of major chal-
lenges in the research of nonlinear turnpike. In
§ 4.1, we show a class of nonlinear OCPs for which
turnpike occurs for all z by explicitly analyzing
unstable manifold.

3.2 The OCP with state variables specified at the terminal
time

In this subsection, we consider an OCP for (5) with
arbitrarily specified terminal states. Let xf ∈ Rn be

given. Let us define cost functional

J2(u) =
1

2

∫ T

0

x(t)>C>Cx(t) + |u|2 dt,

and consider

(OCP2)T : Find a control u ∈ L∞(0, T ;Rm) such that
J2(u) along (5) is minimized over all
u ∈ L∞(0, T ;Rm) such that x(T ) = xf .

With Assumption 3, the corresponding steady state
optimization problem has a unique solution (x̄, ū) =
(0, 0) around the origin. The Hamilton-Jacobi equation
associated with (OCP2)T is

Vt(t, x) + Vx(t, x)f(x)

− 1

2
Vx(t, x)g(x)g(x)>Vx(t, x)> +

1

2
x>C>Cx = 0.

(12)

The Hamiltonian in this case is

H(x, p) = p>f(x)− 1

2
p>g(x)g(x)>p+

1

2
x>C>Cx,

and the corresponding characteristic equation for (12)
is

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, i = 1, . . . , n (13)

with x(0) = x0 and x(T ) = xf .

Under Assumptions 3, the Hamiltonian system (13)
can be written as

d

dt

[
x

p

]
= Ham

[
x

p

]
+ o(|x|+ |p|),

and the origin is a hyperbolic equilibrium with n stable
and n unstable eigenvalues. Let S and U be the stable
and unstable manifolds of (13) at the origin.

Theorem 7 Under Assumption 3, suppose that x0 ∈
Int(π1(S)) and xf ∈ Int(π1(U)). If T > 0 is taken suffi-
ciently large, there exists a solution (xT (t, x0), pT (t, x0))
to (13) satisfying x(0) = x0 and x(T ) = xf . If, moreover,

detDx0x(t, x0) 6= 0 for t ∈ [0, T ], (14)

then
uT (t) = −g(xT (t, x0))>pT (t, x0)

is the local optimal solution for (OCP2)T and turnpike in-
equality (6) hols for some K > 0, µ > 0 independent of T .

Proof. Let ζ0 = (x0, 0), ζ1 = (xf , 0), {(x0, p) | |p| <
ρ} and {(xf , p) | |p| < ρ} which correspond to z0, z1,
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B(z0, ρ)∩D̄ andB(z1, ρ)∩Ē in Theorem 3, respectively.
Then, for T > 0 sufficiently large, there exist ρ > 0, p0

and p1 with |p0|, |p1| < ρ such that a solution to (13)
connecting (x0, p0) and (xf , p1) exists. The rest of the
proof is almost the same as Theorem 4. �

Corollary 8 Let us additionally impose the controllability
of (A,B) in Assumption 3. Then, for sufficiently small |x0|
and |xf | and sufficiently large T , the local optimal control
exists and turnpike inequality (6) holds.

Proof. We again employ the eigenstructure analysis
(A.2). The tangent spaces of S and U at the origin are
written as

T0S = {(u, Pu) |u ∈ Rn},
T0U = {(u, (PL+ I)L−1u) |u ∈ Rn}.

The latter is obtained by showing, using the control-
lability of (A,B), that L is strictly negative definite
(Lemma A.2). Therefore, x0 ∈ Int(π1(S)) and xf ∈
Int(π1(U)) for sufficiently small |x0|, |xf |. It is seen that
the condition (14) holds for these |x0|, |xf | (making
them smaller if necessary) from the analysis on Φ11(t)
in the proof of Theorem 4. �

Remark 5 (i) The linear counterpart of Corollary 8
is in [52, Lemma 5 on page 383] where the authors
use anti-stabilizing solution Pu for the Riccati
equation. In this case, the turnpike holds for all x0

and xf . It can be shown that Pu = (PL+ I)L−1.
Note that in Corollary 8 we only need the de-
tectability condition. Corollary 8 is obtained in
[1, Properties 4.1 and 4.2] using Hamilton-Jacobi
theory under unusual nonlinear controllability
and observability conditions. Compared with the
conditions, we use only the linear controllability
and detectability which can be easily checked.
The authors of [49, Theorem 1 on page 87] obtain
similar results to Corollary 8 with more general
terminal conditions.

(ii) Corollary 8 states that the turnpike occurs for
small initial and terminal states under linear sta-
bilizability and detectability. Relaxing the small-
ness conditions is one of major challenges in
(OCP2). In § 4.2, we will give a class of nonlinear
systems for which the turnpike occurs for all ini-
tial states. This is done with the aid of the result
in [44] (see Proposition B.1) giving an estimate
on the region for stable manifold in terms of
nonlinear stabilizability. In the example in § 4.2,
the unstable manifold is linear and a geometric
condition in Theorem 7 is readily verified.

4 Examples

4.1 Problem (OCP1)

In this subsection, we show a class of nonlinear sys-
tems where the turnpike occurs in (OCP1) for all tar-
gets z. Let us consider the following class of nonlinear
control systems{

ẋ1 = A1x1 +A2(x1, x2)x1

ẋ2 = A3x2 +B2u,
(15)

where A1 is an n1 × n1 Hurwitz matrix, A2 : Rn1 ×
Rn2 → Rn1×n1 is a C2 function and u ∈ Rm is the
control input. Assume that (A3, B2) is stabilizable and
A2(0, x2) = 0 for all x2 ∈ Rn2 . The cost function is

J1 =
1

2

∫ T

0

|u|2 + |C1x1 − z1|2 + |C2x2 − z2|2 dt, (16)

where C1, C2 are constant matrices with appropriate
dimensions, (C2, A3) is detectable and z1 ∈ Rr1 , z2 ∈
Rr2 are given constant vectors.

The corresponding Hamiltonian system for this prob-
lem is

ẋ1 = A1x1 +A2(x1, x2)x1

ẋ2 = A3x2 −B2B
>
2 p2

ṗ1 = −C>1 (C1x1 − z1)−A>1 p1

−Dx1

[
p>1 A2(x1, x2)x1

]>
ṗ2 = −C>2 (C2x2 − z2)

−A>3 p2 −Dx2

[
p>1 A2(x1, x2)x1

]>
.

(17)

Using the stabilizability and detctability of (A3, B2)
and (C3, A3), it can be seen that there is an equilib-
rium (0, x20(z2), p10(z1), p20(z2)) for (17). At this equi-
librium, the linearized matrix is

A1 0 0 0

0 A3 0 −B2B
>
2

−C>1 C1 − Γ 0 −A>1 0

0 −C>2 C2 0 −A>3

 ,

where Γ = Γ(z1, z2) is an n1 × n1 symmetric matrix
and therefore, it can be seen that it is a hyperbolic
equilibrium.

Let P1, P3 and S3 be solutions for

P1A1 +A>1 + C>1 C1 + Γ = 0,

P3A3 + P3A
>
3 − P3B2B

>
2 P3 + C>2 C2 = 0,

(A3 −B2B
>
2 P3)S3 + S3(A3 −B2B

>
2 P3)> = B2B

>
2 ,
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with P1 = P>1 , P3 > 0, S3 > 0 and A3−B2B
>
2 P3 being

Hurwitz. Using a linear coordinate transformation (see
Appendix A)

x1

x2 − x20

p1 − p10

p2 − p20

 = T


p′1

p′2

x′1

x′2

 ; T =


I 0 0 0

0 I 0 S3

P1 0 I 0

0 P3 0 I + P3S3

 ,

T−1 =


I 0 0 0

0 I + S3P3 0 −S3

−P1 0 I 0

0 −P3 0 I

 ,

the Hamiltonian system (17) is rewritten as


ṗ′1 = A1p

′
1 + ψ1(p′1, p

′
2, x
′
1, x
′
2)

ṗ′2 = (A3 −B2B
>
2 P3)p′2 + ψ2(p′1, p

′
2, x
′
1, x
′
2)

ẋ′1 = −A>1 x′1 + ψ3(p′1, p
′
2, x
′
1, x
′
2)

ẋ′2 = −(A3 −B2B
>
2 P3)>x′2 + ψ4(p′1, p

′
2, x
′
1, x
′
2),

where ψj , j = 1, . . . , 4, are appropriately com-
puted higher order terms. Since ψj(0, 0, x

′
1, x
′
2)=0,

j = 1, . . . , 4, for all x′1, x′2, the unstable manifold U at
the equilibrium is the affine space p′1 = p′2 = 0, or

U = {x1 = 0, (I + S3P3)(x2 − x20)− S3(p2 − p20) = 0}.

Since I + S3P3 is nonsingular, which is shown using
Lemma A.2 and Sylvester’s determinant identity, for
any z1, z2, U intersects p1 = p2 = 0 transversally. Now,
using Theorem 4, for any z1, z2, if the initial point
(x1(0), x2(0)) is close enough to (0, x20), the optimal
control for (15)-(16) possesses the turnpike property.

As an example of the class of systems, a turnpike tra-
jectory for a nonlinear optimal control problem

ẋ1 = −x1 + x2
1x2, ẋ2 = u (18a)

J1 =
1

2

∫ T

0

u2 + (x1 − z1)2 + (x2 − z2)2 dt (18b)

is depicted in Fig. 2, where a solution of (SOP) is
(0, z2,−z1, 0).

4.2 Problem (OCP2)

Next, we show a class of nonlinear control systems for
which estimates on (un)stable manifold of Hamilto-
nian systems obtained in [44] are effective for the pre-
diction of turnpike.

0 5 10 15
0

0.5

1

x1

0 5 10 15
-2

-1.5

-1

-0.5

0

0.5

x2

z2=x2(steady)

0 5 10 15
-1

-0.5

0

p1

-z1=p1(steady)

0 5 10 15
0

0.5

1

1.5

2
p2

Fig. 2. Optimal trajectory for (18) (x1(0), x2(0)) = (1, 0.2)
and (z1, z2) = (1,−2).

Let us consider an (n1 + n2)-dimensional system rep-
resented in Byrnes-Isidori normal form [5] for globally
exponentially minimum phase nonlinear systems

ẋ = q(x, y1)

ẏ1 = y2

· · ·
ẏn2

= u,

(19)

where x ∈ Rn1 and q : Rn1+1 → Rn1 is a smooth
map with q(0, 0) = 0. We assume that ẋ = q(x, 0) is
globally exponentially stable. It is known that (19) is
globally exponentially stabilizable via a smooth feed-
back. Therefore, representing y = (y1, . . . , yn2), for a
cost functional

L(u, x, y) =
1

2
(|u|2 + |C1x|2 + |C2y|2),

the associated Hamiltonian system is hyperbolic at the
origin if C2 and the matrix defining y-dynamics is a
detectable pair. If, in addition, |C1x|2 and q(x, y1) sat-
isfy the growth condition in Proposition B.1-(iv) with
respect to x, the stable manifold S of the Hamilto-
nian system satisfies π1(S) = Rn1+n2 . Therefore, from
Corollary 8, the OCP has a solution for all x0 and for
sufficiently small xf that exhibits turnpike if the linear
detectability condition at the origin for h = |C1x|2 +
|C2y|2 is satisfied and T is taken large enough.

As a numerical example, consider (18a), which is in
Byrnes-Isidori normal form (see e.g., [5]), with

J2 =
1

2

∫ T

0

u2 + x2
1 + x2

2 dt. (20)

Introducing a cut-off function on x2, the result in [44]
is applied to confirm that the turnpike occurs for all
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initial condition x0 = (x1(0), x2(0)) and terminal states
xf ∈ π1(U), where U is the unstable manifold of the
Hamiltonian system at the origin. Similarly to the pre-
vious subsection, U is described as

U = {x1 = 0, x2 + p2 = 0}.

Figs. 3, 4 show the turnpike trajectory of the optimal
control problem (18a)-(20) with x0 = (12, 12), xf =
(0, 5). In Fig. 4, x1(t), x2(t), p1(t), p2(t) are depicted
for t ∈ [0, 0.1] while the last figure shows p2(t) for
t ∈ [0.1, 10]. From these figures, one sees that starting
from x0 = (12, 12) at t = 0, the states and costates
rapidly grow during the time span [0, 0.02] and go to
the steady state optimal solution (the origin) by the
time t = 0.1 and then, the states reach the destination
xf = (0, 5) at t = 10. The peak of this growth increases
as |x0| increases. This growth of states is called "peak-
ing phenomenon" of nonlinear stabilization [47] and it
is interesting to see that peaking phenomenon appears
in turnpike trajectory.

Fig. 3. Optimal trajectory for (18a)-(20) with x0 = (12, 12)
and xf = (0, 5).

5 Discussions

The geometric approach proposed in the present paper
may be applied to more general cases where turnpike
phenomena need more sophisticated analyses. Here,
we discuss two kinds of extensions.

5.1 Global analysis when (SOP) admits multiple solutions

When (SOP) admits multiple solutions, multiple equi-
libria appear in associated Hamiltonian systems. If
they are all hyperbolic, the λ-lemma still applies to
draw pictures of flows around stable and unstable
manifolds that are separatrices dividing the phase
space (see, e.g., [35, p.87 Corollary 1]).

Fig. 4. Enhanced figures of Fig. 3 for time spans [0, 0.1] and
[0.1, 10] (last figure).

Let us consider (OCP2)T for

ẋ = −x+ x2 + u, (21a)

J2(u) =
1

2

∫ T

0

u2 dt. (21b)

The associated Hamiltonian system has three equi-
librium points; (0, 0), (1, 0) and (1/2,−1/4), the first
two of which are the global solution of (SOP) and hy-
perbolic. Fig. 5 shows stable and unstable manifolds,
closed orbits around (1/2,−1/4) and heteroclinic or-
bits connecting (0, 0) and (0, 1). From this figure and

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

x

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

p

Equilibrium

Invariant manifolds

Fig. 5. Invariant manifolds of Hamiltonian system for (21).

using the geometric method in the present paper, one
immediately sees that for any initial point x(0) and
final point xf , solution for (OCP2)T with large T ex-
ists. For instance, trajectory in x-p space, correspond-
ing optimal input and optimal trajectory are depicted
in Fig. 6 for x(0) = 1.5, xf = −1 (note that u = −p).
Although the input response looks like turnpike, the
response of x for u ∼ 0 is not stationary but steady mo-
tion with nonzero velocity. Fig. 7 shows optimal tra-
jectory and control response for x(0) = −0.1, xf = 1.4.
Nonzero control is necessary to drive x against stable
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Fig. 6. Prolonged turnpike due to two equilibrium points.

vector field. The ratio of the time duration for nonzero
control for the overall horizon can be arbitrarily small
as T →∞ and in this sense, this can be also considered
turnpike phenomenon.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x

-0.4

-0.2

0

p

Trajectory

Initial point

Final point

0 5 10 15 20 25 30 35 40

t

0

0.5

u

0 5 10 15 20 25 30 35 40

t

0

0.5

1

x

Fig. 7. Bump turnpike due to two equilibrium points.

As for (OCP1), when multiple global minimizers exist,
an interesting question is raised in [36] as to which min-
imizer attracts turnpike for wider initial conditions. It
is interesting to study how the geometry of these in-
variant manifolds affects turnpike occurrence and its
strength in terms of the question.

5.2 Non-hyperbolic Hamiltonian systems

In [13], a concept of velocity turnpike or time-varying
turnpike arising in mechanical systems is proposed
combining trim primitives and turnpike properties.
Motivated by that, the authors in [38] consider turn-
pike properties when detectability (ovservability) is
not satisfied. A common feature in these cases is that

associated Hamiltonian systems have zero eigenval-
ues. It is then interesting to consider the application of
the λ-lemma for normally hyperbolic invariant mani-
folds [8] combining the classification result on Hamil-
tonian and symplectic matrices [28].

6 Conclusions

In this paper, using techniques from dynamical system
theory such as invariant manifolds and the λ-lemma,
we showed that turnpike-like behavior naturally ap-
pears in hyperbolic dynamical systems. This is then ap-
plied to analyze Hamiltonian systems describing con-
trolled trajectories to obtain sufficient conditions for
optimal controls yielding the turnpike to exist.

The framework proposed in the paper provides ge-
ometric insights to understand the turnpike. More
specifically, it makes possible to interlink the turnpike
analysis and the nonlinear stability and/or stabiliz-
ability, for which an enormous amount of research
effort has been devoted for several decades. As exam-
ples, in § 4, we showed classes of nonlinear systems
for which target z for (OCP1) and initial states can be
taken arbitrarily large for (OCP2).

Since our interests were to discover geometric nature
in turnpike, we focused on OCPs without constraints
and exponential turnpike. Future works include appli-
cations of this approach to more specific problems and
considering OCPs with constraints, for which we men-
tion an attempt to analyze the turnpike in the maxi-
mum hands-off control [45].

Acknowledgement. The authors would like to thank Em-
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the early version of the manuscript. The authors are
also grateful to Dario Pighin for valuable discussions.

Appendix

A Results related with Riccati equations and linear
Hamiltonian systems

Let us consider Riccati equation

PA+A>P − PRP +Q = 0, (A.1)

where A,R,Q ∈ Rn×n are constant matrices with
R,Q > 0. Suppose that (A,R) is stabilizable and
(Q,A) is detectable. The following are known.

Lemma A.1 (i) All eigenvalues λ of Ham =
[
A −R
−Q −A>

]
satisfy Reλ 6= 0 (see [26, Lemma 7]).
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(ii) There is a solution P > 0 to (A.1) such that Ac :=
A−RP is Hurwitz (see [16, Corollary 1 on page 92],
[26, Theorem 1]).

(iii) Let L 6 0 be a solution to a Lyapunov equation

LA>c +AcL = R,

then
[
I L
P PL+I

]
is a symplectic matrix and its inverse

is
[
LP+I −L
−P I

]
(see [31, Lemma 2.5], [43, page 1933]).

(iv) The Hamiltonian matrix Ham is block-diagonalized as

Ham

[
I L

P PL+ I

]
=

[
I L

P PL+ I

][
Ac 0

0 −Ac>

]
(A.2)

(see [31, Lemma 2.5], [43, page 1933]).

The following lemma can be considered as a dual ver-
sion of Theorem 2 in [16, page 90], for which simplified
proofs are given for the sake of self-containedness.

Lemma A.2 PL+I is nonsingular. If, in addition, (A,R)
is controllable, then L < 0 (negative definite).

Proof. Let V := PL+ I . From (A.2) we have

AL−RV = −LA>c (A.3a)
−QL−A>V = −V A>c (A.3b)

We show that the condition dim KerV > 1 leads to a
contradiction. It can be shown from (A.3) that 0 6= v ∈
kerV satisfies QLv = 0, V A>c v = 0 using LV = V >L
and Q > 0, showing that KerV is A>c -invariant. Thus,
we may assume that v is an eigenvector of A>c with
eigenvalue λ with Reλ < 0. From (A.3b), we have
ALv = −A>c v = −λLv and therefore (−λI−A)Lv = 0.
This shows that

[
Q

−λI−A

]
Lv = 0. With Re (−λ) >

0, the detectability of (Q,A) implies Lv = 0. This
shows that

[
L

PL+I

]
v = 0 with v 6= 0, which contra-

dicts Lemma A.1(iii). The second statement can also be
proved in a similar way, deriving λu = A>u, Ru = 0
for 0 6= u ∈ KerL and a contradiction. �

Lemma A.3 Let

[
Φ11(t) Φ12(t)

Φ21(t) Φ22(t)

]
= exp[tHam],

where Φij(t), i, j = 1, 2, are n × n matrix functions of t.
When (A,R) is stabilizable and (Q,A) is detectable, Φ11(t)
is nonsingular for t > 0.

Proof. Using (A.2),

Φ11(t) = exp[tAc]

×
{
I +

(
L− exp[−tAc]L exp[−tA>c ]

)
P
}

= exp[tAc](I + L̃(t)P ),

where we have set L̃ := L − exp[−tAc]L exp[−tA>c ].
Since L̃(0) = 0 and

d

dt
L̃(t) = exp[−tAc](AcL+ LA>c ) exp[−tA>c ]

= exp[−tAc]R exp[−tA>c ] > 0

by Lemma A.1(iii), L̃(t) > 0 for t > 0. If Φ11(t)η = 0 for
some t > 0 and η ∈ Cn, then we have (I+ L̃(t)P )η = 0

and therefore η∗Pη + η∗PL̃(t)Pη = 0. This implies
Pη = 0, L̃(t)Pη = 0 and we have η = 0. �

B Existence of infinite horizon optimal control and
stable manifold of Hamiltonian systems

This appendix introduces a result in [44] on the exis-
tence of infinite horizon optimal control. The main re-
sult in the paper is under simpler growth conditions
than those given below, but is more restrictive to apply.

Let U ⊂ Rn be an open set containing the origin. A
nonlinear system (5) is said to be C1-exponentially stabi-
lizable inU if there exists aC1 feedback control u = k(x)
with k(0) = 0 such that the the closed loop system
is exponentially stable with respect to U . Let h(x) be
a C2 nonnegative function defined in Rn satisfying
h(0) = 0, Dh(0) = 0.

For system (5), let x = (x1, x2) with x1 ∈ Rn1 , x2 ∈ Rn2 ,
n1 + n2 = n and rewrite it as

d

dt

[
x1

x2

]
= f(x1, x2) + g(x1, x2)u

=

[
f1(x1, x2)

f2(x1, x2)

]
+

[
g1(x1, x2)

g2(x1, x2)

]
u,

where fj : Rn → Rnj , gj : Rn → Rnj×m, j = 1, 2.
Let ϕR : Rn2 → R be a C∞ cutoff function such
that ϕR(x2) = 1 for |x2| < R and ϕR(x2) = 0 for
|x2| > R+ 1. Define f̃R(x1, x2) := f(x1, ϕR(x2)x2) and
g̃R(x1, x2) := g(x1, ϕR(x2)x2).

Assumption B.1 (i) System (5) is C1-exponentially
stabilizable in Ω, where Ω is an open set in Rn con-
taining the origin.
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(ii) For a nonnegative C1 function h(x), there exist pos-
itive constants p, ρ, ch such that h(x) > ch|x|p for
|x| > ρ.

(iii) The pair of linearizations of f and h at the origin is
detectable.

(iv) For any R > 0, there exist constants cf > 0, cg > 0,
0 6 θ < 1, which may depend on R, such that

|f̃R(x)| 6 cf |x|p+θ,
‖g̃R(x)‖ 6 cg|x|p/2+θ,

for sufficiently large x ∈ Rn.
(v) There exist constants cf2 > 0, cg2 > 0 and 0 6 θ2 < 1

such that

|f2(x1, x2)| 6 cf2|x2|p+θ2 ,
‖g2(x1, x2)‖ 6 cg2|x2|p/2+θ2 ,

for all x1 ∈ Rn1 and sufficiently large x2 ∈ Rn2 .

Proposition B.1 Under Assumption B.1, for OCP (5) and

J =

∫ ∞
0

|u(t)|2 + h(x(t)) dt, (B.1)

there exists an optimal control for x(0) ∈ Ω. Furthermore,
for a Hamiltonian system associated with OCP (5)-(B.1),
a stable manifold S at the origin exists with the projection
property Ω ⊂ π1(S).
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