

Nodal Control and Probabilistic Constrained Optimization using the Example of Gas Networks

Michael Schuster FAU Erlangen-Nürnberg July 27, 2021

Motivation

©Nord Stream 2, Axel Schmidt

©2021 GASCADE Gastransport GmbH

Motivation

Consider the optimization problem

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \mathbb{P}(g(x,\xi) \leq 0) \geq \alpha \end{array}$$

with objective function *f*, constraint *g*, decision vector *x*, random variable ξ (with probability distribution and density function) and probability level α .

We have:

$$\mathbb{P}(g(x,\xi)\leq 0)=\int_{M(x)}\varrho_{\xi}(z)\ dz,$$

with

$$M(x) = \{ \omega \in \Omega \mid g(x, \xi(\omega)) \leq 0 \}.$$

Motivation

Consider the optimization problem

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \mathbb{P}(g(x,\xi) \leq 0) \geq \alpha \end{array}$$

with objective function *f*, constraint *g*, decision vector *x*, random variable ξ (with probability distribution and density function) and probability level α .

We have:

$$\mathbb{P}(g(x,\xi)\leq 0)=\int_{M(x)}\varrho_{\xi}(z)\ dz,$$

with

$$M(x) = \{ \omega \in \Omega \mid g(x, \xi(\omega)) \leq 0 \}.$$

Is there a "better" way to compute this probability?

Mathematical Background

Definition: kernel density estimator

Let $\mathcal{Y} = \{y_1, \dots, y_N\} \subseteq \mathbb{R}^n$ be independent and identically distributed samples of the random variable Y, which has an absolutely continuous distribution function with probability density function ϱ . Let K be a kernel function.

Then the kernel density estimator ρ_N corresponding to the bandwidth $h \in (0, \infty)$ is defined as

$$\varrho_N(z) = \frac{1}{Nh} \sum_{i=1}^N K\left(\frac{z-y_i}{h}\right).$$

Michael Schuster · FAU Erlangen-Nürnberg · Nodal Control and Probabilistic Constrained Optimization using the Example of Gas Networks

Mathematical Background

Theorem: Spheric radial decomposition (SRD)

Let $\xi \sim \mathcal{N}(0, R)$ be the *n*-dimensional standard Gaussian distribution with zero mean and positive definite correlation matrix *R*. Then, for any Borel measurable subset $M \subseteq \mathbb{R}^n$ it holds that

$$\mathbb{P}(\xi \in \boldsymbol{M}) = \int_{\mathbb{S}^{n-1}} \mu_{\chi} \{ \boldsymbol{r} \geq \boldsymbol{0} | \boldsymbol{r} \boldsymbol{L} \boldsymbol{v} \in \boldsymbol{M} \} \boldsymbol{d} \mu_{\eta}(\boldsymbol{v}),$$

where \mathbb{S}^{n-1} is the (n-1)-dimensional sphere in \mathbb{R}^n , μ_η is the uniform distribution on \mathbb{S}^{n-1} , μ_χ denotes the χ -distribution with *n* degrees of freedom and *L* is s.t. $R = LL^T$.

Michael Schuster · FAU Erlangen-Nürnberg · Nodal Control and Probabilistic Constrained Optimization using the Example of Gas Networks

Outline

1) Probabilistic Constrained Optimization on Stationary Gas Networks

2) Probabilistic Constrained Optimization on Dynamic Gas Networks

- Consider a connected, directed, tree-structured graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with vertex set \mathcal{V} and set of edges $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
- From the root the graph is numbered using breadth-first search or depth-first search

The stationary isothermal Euler equations for ideal gases:

semilinear	
$egin{aligned} m{q}_{x} &= m{0}, \ m{c}^{2} ho_{x} &= -rac{\lambda^{F}}{2D}rac{m{q} m{q} }{ ho}. \end{aligned}$	

- Consider a connected, directed, tree-structured graph G = (V, E) with vertex set V and set of edges E ⊆ V × V
- From the root the graph is numbered using breadth-first search or depth-first search

The stationary isothermal Euler equations for ideal gases:

quasilinear					
$egin{aligned} m{q}_{x} &= m{0} \ \left(m{c}^{2} ho + rac{m{q}^{2}}{ ho} ight)_{x} &= - \ \end{pmatrix}_{x} \end{aligned}$	$-\frac{\lambda^F}{2D}\frac{q q }{\rho}.$				

semilinear	
$egin{aligned} q_{x} &= 0,\ c^{2} ho_{x} &= -rac{\lambda^{F}}{2D}rac{q q }{ ho}. \end{aligned}$	

- Consider a connected, directed, tree-structured graph G = (V, E) with vertex set V and set of edges E ⊆ V × V
- From the root the graph is numbered using breadth-first search or depth-first search

The stationary isothermal Euler equations for ideal gases:

solution

$$q(x) = k_1$$

 $p^2(x) = -\frac{\lambda^F}{c^2 D} (R_S T)^2 q(x) |q(x)| x + k_2,$
 $k_1, k_2 \in \mathbb{R}.$

Boundary Conditions:

Inlet pressure

$$oldsymbol{
ho}^{oldsymbol{e}}(0)=oldsymbol{
ho}_0\in\mathbb{R}_{\geq 0}\quad oralloldsymbol{e}\in\mathcal{E}_+(oldsymbol{v}_0)$$

Gas outflow

 $b_i \in \mathbb{R}_{\geq 0}$ represents the consumers gas demand at node v_i $(i = 1, \cdots, n)$

Coupling conditions at the nodes:

Conservation of mass

$$\sum_{e \in \mathcal{E}_{-}(v)} q^{e} \left(\frac{D^{e}}{2}\right)^{2} \pi = b^{v} + \sum_{e \in \mathcal{E}_{+}(v)} q^{e} \left(\frac{D^{e}}{2}\right)^{2} \pi \quad \forall v \in \mathcal{V} \setminus \mathcal{V}_{0}.$$

Continuity in pressure

$$p^{e_1}(L^{e_1})=p^{e_2}(0) \quad orall e_1\in \mathcal{E}_-(v), \ e_2\in \mathcal{E}_+(v).$$

- Let $p \in \mathbb{R}^n$ be the vector of pressures at the nodes v_1, \dots, v_n
- We assume box constraints for the pressures at the nodes: $p_i \in [p_i^{\min}, p_i^{\max}]$

Set of feasible loads

$$(p,q) \in \mathbb{R}^n imes \mathbb{R}^n$$
 satisfies:

- $M := \left\{ \begin{array}{l} b \in \mathbb{R}^n_{\geq 0} \end{array} \right| \begin{array}{l} \bullet \text{ stationary semilinear isothermal Euler equations ,} \\ \bullet \text{ inlet pressure and gas outflow,} \\ \bullet \text{ conservation of mass and continuity in pressure,} \end{array} \right.$

 - pressure bounds.

- Let $p \in \mathbb{R}^n$ be the vector of pressures at the nodes v_1, \cdots, v_n
- We assume box constraints for the pressures at the nodes: $p_i \in [p_i^{\min}, p_i^{\max}]$

Set of feasible loads

$$M := \left\{ \begin{array}{c} b \in \mathbb{R}^n_{\geq 0} \end{array} \middle| \begin{array}{c} (p,q) \in \mathbb{R}^n \times \mathbb{R}^n \text{ satisfies:} \\ \text{ stationary semilinear isothermal Euler equations ,} \\ \text{ inlet pressure and gas outflow,} \\ \text{ conservation of mass and continuity in pressure,} \\ \text{ pressure bounds.} \end{array} \right\}$$

• Assume that the consumers gas demand is random in the sense, that there is a random variable

$$\xi_{b} \sim \mathcal{N}(\mu, \Sigma),$$

on an appropriate probability space. We identify *b* with the image $\xi_b(\omega)$ for $\omega \in \Omega$.

For a given inlet pressure, can we guarantee, that every consumer receives their demanded gas, s.t. the gas pressure in the network is neither too high nor too low, in at least α % of all scenarios?

Stationary Gas Networks: SRD vs KDE

Define $P_{\min}^{\max} := \bigotimes_{i=1}^{n} [p_i^{\min}, p_i^{\max}]$. Then we have $\mathbb{P}(b \in M) = \mathbb{P}(p \in P_{\min}^{\max})$.

Stationary Gas Networks: Application of the SRD

Define a function $g : \mathbb{R}^n \to \mathbb{R}^n$, where $g_i(b)$ states the pressure loss from the root to node v_i .

Lemma 1

A load vector $b \in \mathbb{R}^n_{\geq 0}$ is feasible, i.e. $b \in M$, iff the following system of inequalities hold:

$$p_0^2 \leq \min_{k=1,\cdots,n} \left\lfloor (p_k^{\max})^2 + g_k(b)
ight
floor, \ p_0^2 \geq \max_{k=1,\cdots,n} \left\lceil (p_k^{\min})^2 + g_k(b)
ight
ceil.$$

Stationary Gas Networks: Application of the SRD

- Let $S = \{ v_1, \dots, v_{N_{SRD}} \}$ be a uniformly distributed sample of the unit sphere \mathbb{S}^{n-1}
- For v ∈ S identify the load vector with the one dimensional rays: b_v(r) = rLv + μ
- Define the regular range:
 *R*_{v,reg} := { *r* ≥ 0 | *b*_v(*r*) ≥ 0 }

- Use Lemma 1 to compute the one dimensional sets $M_v = \bigcup_{i=1}^{\ell_v} \left[\underline{a}_{v,i}, \overline{a}_{v,i}\right]$
- Evaluate the χ -distribution: $\mu_{\chi}(M_{\nu}) = \sum_{j=1}^{\ell_{\nu}} F_{\chi}(\overline{a}_{\nu,j}) F_{\chi}(\underline{a}_{\nu,j})$

probability via SRD

$$\mathbb{P}_{N_{\text{SRD}}}(b \in M) = \frac{1}{N_{\text{SRD}}} \sum_{v \in \mathcal{S}} \sum_{j=1}^{\ell_v} F_{\chi}(\overline{a}_{v,j}) - F_{\chi}(\underline{a}_{v,j})$$

Stationary Gas Networks: Application of the KDE

- Let $\mathcal{B} = \{ b^{S,1}, \cdots, b^{S,N_{\mathsf{KDE}}} \} \subseteq \mathbb{R}^n_{\geq 0}$ be independent and identically distributed samples of the random variable ξ_b
- Let P_B = { p(b^{S,1}), · · · , p(b^{S,N_{KDE}}) } ⊆ ℝⁿ be the corresponding pressures at the nodes (also independent and identically distributed)

bandwidth matrix

$$H_{i,i} = h^2 (\Sigma_{N_{\text{KDE}}})_{i,i}$$

 $h = \left(\frac{4}{(n+2)N_{\text{KDE}}}\right)^{\frac{1}{n+4}}$

kernel density estimator ($h_j^2 := H_{j,j}$)

$$\varrho_{\mathcal{P},\mathcal{N}_{\mathsf{KDE}}}(z) = \frac{1}{\mathcal{N}_{\mathsf{KDE}}\prod_{j=1}^{n}h_{j}} \sum_{i=1}^{\mathcal{N}_{\mathsf{KDE}}} \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{z_{j}-p_{j}(b^{\mathcal{S},i})}{h_{j}}\right)^{2}\right)$$

Stationary Gas Networks: Application of the KDE

$$\begin{split} \mathbb{P}_{N_{\mathsf{KDE}}}(p \in P_{\min}^{\max}) &= \int_{P_{\min}^{\max}} \varrho_{p,N_{\mathsf{KDE}}}(z) \, dz \\ &= \int_{P_{\min}^{\max}} \frac{1}{N_{\mathsf{KDE}} \prod_{j=1}^{n} h_j} \sum_{i=1}^{N_{\mathsf{KDE}}} \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{z_j - p_j(b^{S,i})}{h_j}\right)^2\right) \, dz \\ &= \frac{1}{N_{\mathsf{KDE}} \prod_{j=1}^{n} h_j} \sum_{i=1}^{N_{\mathsf{KDE}}} \prod_{j=1}^{n} \int_{\rho_j^{\min}}^{\rho_j^{\max}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{z_j - p_j(b^{S,i})}{h_j}\right)^2\right) \, dz_j \end{split}$$

Stationary Gas Networks: Application of the KDE

$$\mathbb{P}_{\mathsf{N}\mathsf{K}\mathsf{D}\mathsf{E}}(p \in P_{\min}^{\max}) = \int_{P_{\min}^{\max}} \varrho_{p,\mathsf{N}\mathsf{K}\mathsf{D}\mathsf{E}}(z) \, dz$$

$$= \int_{P_{\min}^{\max}} \frac{1}{\mathsf{N}\mathsf{K}\mathsf{D}\mathsf{E}} \prod_{j=1}^{n} h_{j} \sum_{i=1}^{N} \prod_{j=1}^{n} \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{z_{j} - p_{j}(b^{S,i})}{h_{j}}\right)^{2}\right) \, dz$$

$$= \frac{1}{\mathsf{N}\mathsf{K}\mathsf{D}\mathsf{E}} \prod_{j=1}^{n} h_{j} \sum_{i=1}^{N} \prod_{j=1}^{n} \int_{\rho_{j}^{\min}}^{\rho_{j}^{\max}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{z_{j} - p_{j}(b^{S,i})}{h_{j}}\right)^{2}\right) \, dz_{j}$$
Gauss error function: $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp\left(-t^{2}\right) \, dt$
probability via KDE

$$\mathbb{P}_{N_{\mathsf{KDE}}}(p \in P_{\min}^{\max}) = \frac{1}{N_{\mathsf{KDE}}2^n} \sum_{i=1}^{N_{\mathsf{KDE}}} \prod_{j=1}^n \left[\operatorname{erf}\left(\frac{p^{\max} - p_j(b^{S,i})}{\sqrt{2} h_j}\right) - \operatorname{erf}\left(\frac{p^{\min} - p_j(b^{S,i})}{\sqrt{2} h_j}\right) \right]$$

SRD vs KDE: Advantages and Disadvantages

	₽	
SRD	Powerful toolReduces dimension of integration	 Analytical solution required
KDE	 Almost always applicable 	Almost surely convergenceCurse of dimensionality

Stationary Gas Networks: Optimization

For $f : \mathbb{R}^n \to \mathbb{R}, p^{\max} \mapsto f(p^{\max})$ convex and $\alpha \in (0, 1)$ consider

$$(O) \begin{cases} \min_{p^{\max} \in \mathbb{R}^n} f(p^{\max}) \\ \text{s.t.} \quad \mathbb{P}(b \in M(p^{\max})) \ge \alpha \\ p^{\max} \ge p^{\min} \end{cases} \quad (OA) \begin{cases} \min_{p^{\max} \in \mathbb{R}^n} f(p^{\max}) \\ \text{s.t.} \quad \mathbb{P}_{N_{\mathsf{KDE}}}(b \in M(p^{\max})) \ge \alpha \\ p^{\max} \ge p^{\min} \end{cases}$$

Lemma 2

- Assume that the set of admissible upper pressure bounds for (O) and (OA) is nonempty
- Assume that *f* is strictly monotonous increasing

Then there exists a solution $p^{*,\max}$ of (O) and $p^{*,\max}_{N_{kDF}}$ of (OA), s.t.

 $\mathbb{P}(b \in M(p^{*,\max})) = lpha,$ $\mathbb{P}_{N_{\mathsf{KDE}}}(b \in M(p^{*,\max}_{N_{\mathsf{KDE}}})) = lpha.$

Stationary Gas Networks: Optimization

Define $g^{\alpha}(p^{\max})$ and $\mathcal{Z}(g^{\alpha}_{N_{\mathsf{KDE}}}, \mathcal{Z}_{N_{\mathsf{KDE}}} \text{ analog})$ as $g^{\alpha}(p^{\max}) := \alpha - \mathbb{P}(b \in \mathcal{M}(p^{\max})),$ $\mathcal{Z} := \{x \in \mathbb{R}^n \mid x \ge p^{\min} \text{ and } g^{\alpha}(x) = 0\}.$

Theorem 3 part 1

Let a probability level $\alpha \in (0, 1)$, an inlet pressure p_0 and a lower pressure bound p^{\min} be given.

- Assume that the set of admissible upper pressure bounds for (O) and (OA) is nonempty
- Assume that *f* is strictly monotonous increasing

Let $p^{*,\max}$ be a solution of (O).

Stationary Gas Networks: Optimization

Define $g^{\alpha}(p^{\max})$ and $\mathcal{Z}(g^{\alpha}_{N_{\mathsf{KDE}}}, \mathcal{Z}_{N_{\mathsf{KDE}}}$ analog) as

$$egin{aligned} &g^lpha(oldsymbol{p}^{ ext{max}}) := lpha - \mathbb{P}(oldsymbol{b} \in oldsymbol{M}(oldsymbol{p}^{ ext{max}})), \ &\mathcal{Z} := \{ oldsymbol{x} \in \mathbb{R}^n \mid oldsymbol{x} \geq oldsymbol{p}^{ ext{min}} ext{ and } oldsymbol{g}^lpha(oldsymbol{x}) = oldsymbol{0} \}. \end{aligned}$$

Theorem 3

Let $p^{*,\max}$ be a solution of (O).

- Assume that *p*^{*,max} is unique
- Assume that for all $x \in \mathbb{Z}$ there exist $d_1, d_2 \in \mathbb{R}^n \setminus \{0_n\}$ s.t. for all $\tau \in (0, 1)$:

 $g^{\alpha}(x+\tau d_1) < 0$ and $g^{\alpha}(x+\tau d_2) > 0$.

• Assume that there exist $\delta, \epsilon > 0$, s.t. for $p \in \mathbb{Z}$ with

 $\|\boldsymbol{p}^{*,\max} - \boldsymbol{p}\| > \delta/2$ it holds $|f(\boldsymbol{p}^{*,\max}) - f(\boldsymbol{p})| > \epsilon$

Then there exists N_{KDE} sufficiently large, s.t. the solution $p_{N_{\text{KDE}}}^{*,\text{max}}$ of (OA) is close to $p^{*,\text{max}}$, i.e.

$$\| oldsymbol{p}^{*,\mathsf{max}} - oldsymbol{p}^{*,\mathsf{max}}_{\mathsf{N}_{\mathsf{KDE}}} \| < \delta$$
 a.s.

Outline

1) Probabilistic Constrained Optimization on Stationary Gas Networks

2) Probabilistic Constrained Optimization on Dynamic Gas Networks

Time dependent Uncertainty

• Write a function *f* as Fourier series

$$f(t) = \sum_{m=0}^{\infty} a_m^0(f) \psi_m(t)$$

• For random variables $\xi_m \sim \mathcal{N}(\mathbf{1}, \sigma)$ define

$$f^{\omega}(t) = \sum_{m=0}^{\infty} \xi_m(\omega) a^0_m(t) \psi_m(t)$$

Time dependent Uncertainty

• Write a function *f* as Fourier series

~

$$f(t) = \sum_{m=0}^{\infty} a_m^0(f) \psi_m(t)$$

• For random variables $\xi_m \sim \mathcal{N}(\mathbf{1}, \sigma)$ define

$$f^{\omega}(t) = \sum_{m=0}^{\infty} \xi_m(\omega) a^0_m(t) \psi_m(t)$$

Time dependent probabilistic constraint

$$\mathbb{P}(b \in M(t) \forall t \in [0, T]) \geq \alpha$$

"We want to guarantee that a percentage α of all possible random scenarios is feasible in every point in time $t \in [0, T]$."

Dynamic Gas Networks: Mathematical Modelling

Consider a connected, directed graph G = (V, E) with vertex set V and set of edges E ⊆ V × V.

isothermal Euler equations (for ideal gas)

(ISO)
$$\begin{cases} \rho_t + q_x = 0, \\ q_t + \left(c^2 \rho + \frac{q}{\rho}\right)_x = -\frac{\lambda^F}{2D} \frac{q|q|}{\rho}. \end{cases}$$

set of feasible loads

$$M(t^*) := \left\{ \begin{array}{l} b: [0,T] \to \mathbb{R}^n \\ b_i \in \operatorname{Lip}([0,T]) \end{array} \middle| \begin{array}{l} \text{The solution of (ISO) with} \\ \bullet \text{ initial conditions,} \\ \bullet \text{ inlet density and gas outflow,} \\ \bullet \text{ conservation of mass,} \\ \bullet \text{ continuity in pressure,} \\ \bullet \text{ satisfies box constraints for the density in } t^*. \end{array} \right\}$$

Dynamic Gas Networks: Application of the KDE

- Consider a sequence of random variables $(\xi_m)_{m\geq 0}$ with $\xi_m \sim \mathcal{N}(\mu, \Sigma)$
- For $m \ge 0$ let $\mathcal{A}_m = \{ a_m^{\omega,1}, \cdots, a_m^{\omega,N_{\mathsf{KDE}}} \}$ be an independent and identically distributed sampling of the random variable ξ_m
- Let $\mathcal{B}_{\mathcal{A}} = \{ b^{\omega,1}(t), \cdots, b^{\omega,N_{\mathsf{KDE}}}(t) \}$ be the corresponding sampling of the random boundary functions (also independent and identically distributed)
- Let $\mathcal{P}_{\mathcal{B}} = \{ \rho_{out}(t, b^{\omega, 1}), \cdots, \rho_{out}(t, b^{\omega, N_{\mathsf{KDE}}}) \}$ be the corresponding sampling of densities at the outflow nodes

$$\rho_{\mathsf{out}}(t,\cdot) \in \mathcal{P}_{\min}^{\max} \ \forall t \in [0,T] \quad \Leftrightarrow \quad \min_{t \in [0,T]} \rho_{\mathsf{out}}(t,\cdot), \max_{t \in [0,T]} \rho_{\mathsf{out}}(t,\cdot) \in \mathcal{P}_{\min}^{\max}$$

• For $i = 1, \dots, N_{\text{KDE}}$ let $\overline{\underline{P}}_{\mathcal{B}} = \left[\left(\underline{\rho}_{\text{out}}(b^{\omega,i}), \overline{\rho}_{\text{out}}(b^{\omega,i}) \right)^{\top} \right]$ be the sampling of minimal and maximal densities.

probability via KDE

Apply KDE as in the stationary case to 2*n*-dimensional sample

Dynamic Gas Networks: Application of the KDE

probability via kde

$$\mathbb{P}(\rho_{\text{out}}(t) \in \mathcal{P}_{\min}^{\max} \forall t \in [0, T]) =$$

$$= \frac{1}{N_{\text{KDE}}} \sum_{i=1}^{N_{\text{KDE}}} \prod_{j=1}^{n} \left[\operatorname{erf}\left(\frac{\rho_{j}^{\max} - \underline{\rho}_{j,\text{out}}(b^{\omega,i})}{\sqrt{2} h_{j}^{\min}}\right) - \operatorname{erf}\left(\frac{\rho_{j}^{\min} - \underline{\rho}_{j,\text{out}}(b^{\omega,i})}{\sqrt{2} h_{j}^{\min}}\right) \right]$$

$$\cdot \left[\operatorname{erf}\left(\frac{\rho_{j}^{\max} - \overline{\rho}_{j,\text{out}}(b^{\omega,i})}{\sqrt{2} h_{j}^{\max}}\right) - \operatorname{erf}\left(\frac{\rho_{j}^{\min} - \overline{\rho}_{j,\text{out}}(b^{\omega,i})}{\sqrt{2} h_{j}^{\max}}\right) \right]$$

Optimization analog to the stationary case!

Dynamic Gas Networks: A Numerical Example

Consider (ISO) on a single edge:

(ISO) $b^{v_1}(t)$ $\rho^{v_0}(t)$ V_1 V_0

Variable	Letter	Value	Unit
lower density bound	$ ho^{min}$	34	kg/m ³
speed of sound in the gas	С	343	m/s
pipe friction coefficient	λ^F	0.1	
pipe diameter	D	0.5	m
pipe length	L	30	km
final time	Т	24	h

Dynamic Gas Networks: A Numerical Example

Michael Schuster · FAU Erlangen-Nürnberg · Nodal Control and Probabilistic Constrained Optimization using the Example of Gas Networks

Dynamic Gas Networks: A Numerical Example

 $\rho_{\rm det}^{*,\rm max} = 42.15 \frac{\rm kg}{\rm m^3}$

 $w f(p_{\text{prob}}^{\text{max}})$ $\min_{\substack{\rho_{\rm prob}^{\rm max}}}$ s.t. $\rho^{\nu_1}(t) \in \left[\rho^{\min}, \rho_{det}^{\max}\right] \quad \forall t \in [0, T]$ s.t. $\mathbb{P}\left(\rho^{\nu_1}(t) \in \left[\rho^{\min}, \rho_{prob}^{\max}\right] \quad \forall t \in [0, T]\right) \geq 0.9$ $\rho_{\text{prob}}^{\text{max}} \ge \rho^{\text{min}}$

 $\rho_{\text{prob}}^{*,\text{max}} = 42.49 \frac{\text{kg}}{\text{m}^3}$

Michael Schuster FAU Erlangen-Nürnberg Nodal Control and Probabilistic Constrained Optimization using the Example of Gas Networks

Summary

- We introduced the SRD and the KDE
- We computed the probability for a random load vector to be feasible using SRD and KDE respectively
- We discussed the advantages and disadvantages of both methods
- We showed the existence of optimal solutions for a certain probabilistic constrained optimization problem
- We showed that the optimal solution of the approximated problem is close to the optimal solution of the exact problem
- We extended the KDE approach to a dynamic setting

References

- M. Schuster, E. Strauch, M. Gugat, J. Lang: *Probabilistic Constrained Optimization on Flow Networks.* Optim. Eng. 2021, https://doi.org/10.1007/s11081-021-09619-x
- C. Gotzes, H. Heitsch, R. Henrion, R. Schultz: On the quantification of nomination feasibility in stationary gas networks with random loads. Math. Methods Oper. Res. 84, 2016, pp. 427-457
- M. Farshbaf-Shaker, M. Gugat, H. Heitsch, R. Henrion: Optimal Neumann boundary control of a vibrating string with uncertain initial data and probabilistic terminal constraints. Set-Valued Var. Anal. 26, 2018, pp. 821-841
- M. Gugat, S. Ulbrich: *Lipschitz solutions of initial boundary value problems for balance laws.* Math. Models Methods. Appl. Sci. 28(5), 2018, pp. 921-951
- M. Gugat, M. Schuster: Stationary gas networks with compressor control and random loads: Optimization with probabilistic constraints. Math. Prob. Eng., vol 2018, Article-ID 9784079, 2018, 17 pages

