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The Turnpike Phenomenon
Consider a dynamic optimal control problem with
finite time horizon and objective function of integral
type: min

∫ T
0 ‖y‖

2 + ‖u‖2 s.t. y(0) = y0, y ′ = Ay + Bu

• If all the time-derivatives are set to zero and initial
conditions and terminal conditions are canceled,
this yields a static optimal control problem.
• Turnpike results state relations between the

static optimal state/control and the dynamic
optimal states/controls.
• Typically for large time intervals, close to its

middle the dynamic optimal states/controls are
close to the static optimal state/control.
• In short: The influence of the initial data and

terminal data becomes small around T
2 !

Wikipedia: The New
Jersey Turnpike Creative-
Commons-Lizenz
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The Turnpike Phenomenon: A historical perspective

Very early references:

• JOHN VON NEUMANN (1937) A Model of General Economic Equilibrium
• FRANK RAMSEY (1928) A Mathematical Theory of Saving.

Later
• PAUL A. SAMUELSON (1976) The periodic turnpike theorem

And a quote from
• LW MCKENZIE (1986) Optimal econ. growth, turnpike thms and comparative dynamics:

"There is a fastest route between any two points;

and if the origin and destination are close together and far from the turnpike, the
best route may not touch the turnpike.

But if origin and destination are far enough apart, it will always pay to get on
to the turnpike and cover distance at the best rate of travel, even if this means
adding a little mileage at either end"
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An example with L2 objective

A 1d-example

Let T > 0, γ > 0 and λ 6= 0 be given. Consider the dynamic optimal control problem

min
1
π

∫ T

0
y2(τ ) + γ u2(τ ) dτ

subject to
y(0) = y0, y ′(t) = λ (y(t) + u(t)) , y(T ) = y0.

Without loss of generality we can put T = 2π.
Then we can write y(t) as a FOURIERseries.

With y(t) = a0
2 +

∑
k ak cos(kt) + bk sin(kt),

u(t) = v0
2 +

∑
k vk cos(kt) + wk sin(kt), we obtain∑

k −k ak sin(kt) + k bk cos(kt) = λ a0+v0
2 +

∑
k λ(ak + vk) cos(kt) + λ(bk + wk) sin(kt).

This yields v0 = −a0, λ(ak + vk) = k bk and λ(bk + wk) = −k ak .
For the objective value we obtain
J = 1+γ

2 a2
0+
∑

k a2
k+b2

k+γ (
k
λbk−ak)

2+γ (k
λak+bk)

2 = 1+γ
2 a2

0+
∑

k(a
2
k+b2

k)(1+γ+γ
k2

λ2).

Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 7



An example with L2 objective

A 1d-example

Let T > 0, γ > 0 and λ 6= 0 be given. Consider the dynamic optimal control problem

min
1
π

∫ T

0
y2(τ ) + γ u2(τ ) dτ

subject to
y(0) = y0, y ′(t) = λ (y(t) + u(t)) , y(T ) = y0.

Without loss of generality we can put T = 2π.
Then we can write y(t) as a FOURIERseries.

With y(t) = a0
2 +

∑
k ak cos(kt) + bk sin(kt),

u(t) = v0
2 +

∑
k vk cos(kt) + wk sin(kt), we obtain∑

k −k ak sin(kt) + k bk cos(kt) = λ a0+v0
2 +

∑
k λ(ak + vk) cos(kt) + λ(bk + wk) sin(kt).

This yields v0 = −a0, λ(ak + vk) = k bk and λ(bk + wk) = −k ak .

For the objective value we obtain
J = 1+γ

2 a2
0+
∑

k a2
k+b2

k+γ (
k
λbk−ak)

2+γ (k
λak+bk)

2 = 1+γ
2 a2

0+
∑

k(a
2
k+b2

k)(1+γ+γ
k2

λ2).

Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 7



An example with L2 objective

A 1d-example

Let T > 0, γ > 0 and λ 6= 0 be given. Consider the dynamic optimal control problem

min
1
π

∫ T

0
y2(τ ) + γ u2(τ ) dτ

subject to
y(0) = y0, y ′(t) = λ (y(t) + u(t)) , y(T ) = y0.

Without loss of generality we can put T = 2π.
Then we can write y(t) as a FOURIERseries.

With y(t) = a0
2 +

∑
k ak cos(kt) + bk sin(kt),

u(t) = v0
2 +

∑
k vk cos(kt) + wk sin(kt), we obtain∑

k −k ak sin(kt) + k bk cos(kt) = λ a0+v0
2 +

∑
k λ(ak + vk) cos(kt) + λ(bk + wk) sin(kt).

This yields v0 = −a0, λ(ak + vk) = k bk and λ(bk + wk) = −k ak .
For the objective value we obtain
J = 1+γ

2 a2
0+
∑

k a2
k+b2

k+γ (
k
λbk−ak)

2+γ (k
λak+bk)

2 = 1+γ
2 a2

0+
∑

k(a
2
k+b2

k)(1+γ+γ
k2

λ2).
Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 7



An example with L2 objective

A 1d-example: The transformed optimal control problem is

min
1 + γ

2
a2

0 +
∑

k

(a2
k + b2

k)(1 + γ + γ
k2

λ2 )

subject to a0
2 +

∑
k ak = y0.

The necessary optimality conditions yield a LAGRANGE multiplier µ such that

• (1 + γ)a0 +
1
2µ = 0 and for k ∈ {1, 2, 3, ...}

2 (1 + γ + γ
k2

λ2 ) ak + µ = 0,

2 (1 + γ + γ
k2

λ2 ) bk = 0.

• Thus bk = 0, a0
2 = − 1

2(1+γ)
µ
2 and ak = − 1

1+γ+γ k2

λ2

µ
2.

• This yields y(t) = −µ
2

(
1

2(1+γ) +
∑
k

1
1+γ+ γ

λ2 k2 cos(k t)
)
.
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An example with L2 objective (continued)

The FOURIERseries of cosh(a(t − π)) for a 6= 0 is

cosh(a(t − π)) = sinh(π a)
π a

+
2
π
sinh(π a)

∞∑
k=1

a
a2 + k2 cos(k t).

Hence we have
π a

2 sinh(π a)
cosh(a(t − π)) = 1

2
+

∞∑
k=1

a2

a2 + k2 cos(k t).

For the optimal state this yields with a = |λ|
√

1 + 1
γ :

y(t) = −µ
2

[
1

2(1+γ) +
∑
k

1
1+γ+ γ

λ2 k2 cos(k t)
]
= −µ

2

[
1

2(1+γ) +
1

γ(1+ 1
γ )

∑
k

λ2(1+ 1
γ )

λ2 (1+ 1
γ)+k2 cos(k t)

]
= −µ

2

[
π

2 sinh(π λ
√

1+ 1
γ )

λ√
γ+γ2

cosh
(
λ
√

1 + 1
γ (t − π)

)]
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An example with L2 objective (continued)

On a general time interval, for t ∈ [0, T ] we obtain an optimal state of the form

y(t) = α cosh

(
λ

√
1 +

1
γ

(
t − T

2

))
.

Let y0 = 1, T = 100; cosh(t)
cosh(100)

Between −80 and 80, there is not much going on!
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An example with H1 objective

A 1d-example

Let T > 0, γ > 0 and λ > 0 be given. Consider the dynamic optimal control problem

min
1
π

∫ T

0
y2(τ ) + η2|∂ty |2(τ ) + γ u2(τ ) dτ

subject to
y(0) = y0, y ′(t) = λ(y(t) + u(t)), y(T ) = y0.

Again for T = 2π we write y(t) as a FOURIERseries.

With y(t) = a0
2 +

∑
k ak cos(kt) + bk sin(kt),

u(t) = v0
2 +

∑
k vk cos(kt) + wk sin(kt), we obtain again

v0 = −a0, λ(ak + vk) = k bk and λ(bk + wk) = −k ak .
For the objective value we obtain
J = 1+γ

2 a2
0 +
∑

k(1 + η2k2) (a2
k + b2

k) + γ (k
λbk − ak)

2 + γ (k
λak + bk)

2 =
1+γ

2 a2
0 +
∑

k(a
2
k + b2

k)
(
1 + γ +

(
η2 + γ

λ2

)
k2
)
.
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An example with H1 objective

A 1d-example: The transformed optimal control problem is

min
1 + γ

2
a2

0 +
∑

k

(a2
k + b2

k)
(

1 + γ +
(
η2 +

γ

λ2

)
k2
)

subject to a0
2 +

∑
k ak = y0.

The necessary optimality conditions yield a LAGRANGE multiplier µ such that

• (1 + γ)a0 +
1
2µ = 0 and for k ∈ {1, 2, 3, ...}

2
(

1 + γ +
(
η2 +

γ

λ2

)
k2
)

ak +µ = 0,

2
(

1 + γ +
(
η2 +

γ

λ2

)
k2
)

bk = 0.

• Thus bk = 0, a0
2 = − 1

2(1+γ)
µ
2 and ak = − 1

1+γ+(η2+ γ

λ2) k2
µ
2.

• This yields y(t) = −µ
2

[
1

2(1+γ) +
∑
k

1
1+γ+(η2+ γ

λ2) k2 cos(k t)
]
.

Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 13



An example with H1 objective

A 1d-example: The transformed optimal control problem is

min
1 + γ

2
a2

0 +
∑

k

(a2
k + b2

k)
(

1 + γ +
(
η2 +

γ

λ2

)
k2
)

subject to a0
2 +

∑
k ak = y0.

The necessary optimality conditions yield a LAGRANGE multiplier µ such that

• (1 + γ)a0 +
1
2µ = 0 and for k ∈ {1, 2, 3, ...}

2
(

1 + γ +
(
η2 +

γ

λ2

)
k2
)

ak +µ = 0,

2
(

1 + γ +
(
η2 +

γ

λ2

)
k2
)

bk = 0.

• Thus bk = 0, a0
2 = − 1

2(1+γ)
µ
2 and ak = − 1

1+γ+(η2+ γ

λ2) k2
µ
2.

• This yields y(t) = −µ
2

[
1

2(1+γ) +
∑
k

1
1+γ+(η2+ γ

λ2) k2 cos(k t)
]
.

Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 13



An example with H1 objective

A 1d-example: The transformed optimal control problem is

min
1 + γ

2
a2

0 +
∑

k

(a2
k + b2

k)
(

1 + γ +
(
η2 +

γ

λ2

)
k2
)

subject to a0
2 +

∑
k ak = y0.

The necessary optimality conditions yield a LAGRANGE multiplier µ such that

• (1 + γ)a0 +
1
2µ = 0 and for k ∈ {1, 2, 3, ...}

2
(

1 + γ +
(
η2 +

γ

λ2

)
k2
)

ak +µ = 0,

2
(

1 + γ +
(
η2 +

γ

λ2

)
k2
)

bk = 0.

• Thus bk = 0, a0
2 = − 1

2(1+γ)
µ
2 and ak = − 1

1+γ+(η2+ γ

λ2) k2
µ
2.

• This yields y(t) = −µ
2

[
1

2(1+γ) +
∑
k

1
1+γ+(η2+ γ

λ2) k2 cos(k t)
]
.

Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 13



An example with H1 objective

A 1d-example: The transformed optimal control problem is

min
1 + γ

2
a2

0 +
∑

k

(a2
k + b2

k)
(

1 + γ +
(
η2 +

γ

λ2

)
k2
)

subject to a0
2 +

∑
k ak = y0.

The necessary optimality conditions yield a LAGRANGE multiplier µ such that

• (1 + γ)a0 +
1
2µ = 0 and for k ∈ {1, 2, 3, ...}

2
(

1 + γ +
(
η2 +

γ

λ2

)
k2
)

ak +µ = 0,

2
(

1 + γ +
(
η2 +

γ

λ2

)
k2
)

bk = 0.

• Thus bk = 0, a0
2 = − 1

2(1+γ)
µ
2 and ak = − 1

1+γ+(η2+ γ

λ2) k2
µ
2.

• This yields y(t) = −µ
2

[
1

2(1+γ) +
∑
k

1
1+γ+(η2+ γ

λ2) k2 cos(k t)
]
.

Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 13



An H1 example (continued)

With the FOURIERseries (for a 6= 0)

π a
2 sinh(π a)

cosh(a(t − π)) = 1
2
+

∞∑
k=1

a2

a2 + k2 cos(k t)

for the optimal state we obtain with a = |λ|
√

(1+γ)
η2λ2+γ

:

y(t) = −µ
2

[
1

2(1+γ) +
∑
k

1
1+γ+η2λ2+γ

λ2 k2
cos(k t)

]
= −µ

2

[
1

2(1+γ) +
1

1+γ

∑
k

λ2(1+γ)
η2λ2+γ

λ2(1+γ)
η2λ2+γ

+k2
cos(k t)

]
= −µ

2

[
1

(1+γ)
π a

2 sinh(π a) cosh (a (t − π)))
]
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An H1 example (continued)

On a general time interval, for t ∈ [0, T ] we obtain an optimal state of the form

y(t) = α cosh

(
λ

√
(1 + γ)

γ + η2λ2

(
t − T

2

))
.

γ = 1 = η, λ = 1√
2
; cosh(t)
cosh(100) and

cosh(
√

2√
3

t)

cosh(100
√

2/
√

3)

For the L2-case, we have aL2 = |λ|
√

1 + 1
γ = |λ|

√
(1+γ)
γ > |λ|

√
(1+γ)
γ+η2λ2 = aH1.
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An example with H2 objective

H2 objective

Let T > 0, γ > 0 and λ > 0 be given. Consider the dynamic optimal control problem

min
1
π

∫ T

0
y2(τ ) + η2|∂2

tty |2(τ ) + γ u2(τ ) dτ

subject to
y(0) = y0, y ′(t) = λ(y(t) + u(t)), y(T ) = y0.

Again for T = 2π we write y(t) as a FOURIERseries.

With y(t) = a0
2 +

∑
k ak cos(kt) + bk sin(kt),

u(t) = v0
2 +

∑
k vk cos(kt) + wk sin(kt), we obtain again

v0 = −a0, λ(ak + vk) = k bk and λ(bk + wk) = −k ak .
For the objective value we obtain
J = 1+γ

2 a2
0 +
∑

k(1 + η2k4) (a2
k + b2

k) + γ (k
λbk − ak)

2 + γ (k
λak + bk)

2 =
1+γ

2 a2
0 +
∑

k(a
2
k + b2

k)
(
1 + γ + η2 k4 + γ

λ2 k2
)
.

Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 16



An example with H2 objective

H2 objective

Let T > 0, γ > 0 and λ > 0 be given. Consider the dynamic optimal control problem

min
1
π

∫ T

0
y2(τ ) + η2|∂2

tty |2(τ ) + γ u2(τ ) dτ

subject to
y(0) = y0, y ′(t) = λ(y(t) + u(t)), y(T ) = y0.

Again for T = 2π we write y(t) as a FOURIERseries.

With y(t) = a0
2 +

∑
k ak cos(kt) + bk sin(kt),

u(t) = v0
2 +

∑
k vk cos(kt) + wk sin(kt), we obtain again

v0 = −a0, λ(ak + vk) = k bk and λ(bk + wk) = −k ak .

For the objective value we obtain
J = 1+γ

2 a2
0 +
∑

k(1 + η2k4) (a2
k + b2

k) + γ (k
λbk − ak)

2 + γ (k
λak + bk)

2 =
1+γ

2 a2
0 +
∑

k(a
2
k + b2

k)
(
1 + γ + η2 k4 + γ

λ2 k2
)
.

Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 16



An example with H2 objective

H2 objective

Let T > 0, γ > 0 and λ > 0 be given. Consider the dynamic optimal control problem

min
1
π

∫ T

0
y2(τ ) + η2|∂2

tty |2(τ ) + γ u2(τ ) dτ

subject to
y(0) = y0, y ′(t) = λ(y(t) + u(t)), y(T ) = y0.

Again for T = 2π we write y(t) as a FOURIERseries.

With y(t) = a0
2 +

∑
k ak cos(kt) + bk sin(kt),

u(t) = v0
2 +

∑
k vk cos(kt) + wk sin(kt), we obtain again

v0 = −a0, λ(ak + vk) = k bk and λ(bk + wk) = −k ak .
For the objective value we obtain
J = 1+γ

2 a2
0 +
∑

k(1 + η2k4) (a2
k + b2

k) + γ (k
λbk − ak)

2 + γ (k
λak + bk)

2 =
1+γ

2 a2
0 +
∑

k(a
2
k + b2

k)
(
1 + γ + η2 k4 + γ

λ2 k2
)
.

Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 16



An example with H2 objective

A 1d-example: The transformed optimal control problem is

min
1 + γ

2
a2

0 +
∑

k

(a2
k + b2

k)
(
η2 k4 +

γ

λ2 k2 + 1 + γ
)

subject to a0
2 +

∑
k ak = y0.

The necessary optimality conditions yield a LAGRANGE multiplier µ such that

• (1 + γ)a0 +
1
2µ = 0 and for k ∈ {1, 2, 3, ...}

2
(
η2 k4 +

γ

λ2 k2 + 1 + γ
)

ak +µ = 0,

2
(
η2 k4 +

γ

λ2 k2 + 1 + γ
)

bk = 0.

• Thus bk = 0, a0
2 = − 1

2(1+γ)
µ
2 and ak = − 1

η2 k4+ γ

λ2 k2+1+γ
µ
2.

• This yields y(t) = −µ
2

[
1

2(1+γ) +
∑
k

1
η2 k4+ γ

λ2 k2+1+γ cos(k t)
]
. Thus y is twice

continuously differentiable and y ′(0) = 0. The |curvature| decays at 0!

Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 17



An example with H2 objective

A 1d-example: The transformed optimal control problem is

min
1 + γ

2
a2

0 +
∑

k

(a2
k + b2

k)
(
η2 k4 +

γ

λ2 k2 + 1 + γ
)

subject to a0
2 +

∑
k ak = y0.

The necessary optimality conditions yield a LAGRANGE multiplier µ such that

• (1 + γ)a0 +
1
2µ = 0 and for k ∈ {1, 2, 3, ...}

2
(
η2 k4 +

γ

λ2 k2 + 1 + γ
)

ak +µ = 0,

2
(
η2 k4 +

γ

λ2 k2 + 1 + γ
)

bk = 0.

• Thus bk = 0, a0
2 = − 1

2(1+γ)
µ
2 and ak = − 1

η2 k4+ γ

λ2 k2+1+γ
µ
2.

• This yields y(t) = −µ
2

[
1

2(1+γ) +
∑
k

1
η2 k4+ γ

λ2 k2+1+γ cos(k t)
]
. Thus y is twice

continuously differentiable and y ′(0) = 0. The |curvature| decays at 0!

Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 17



An example with H2 objective

A 1d-example: The transformed optimal control problem is

min
1 + γ

2
a2

0 +
∑

k

(a2
k + b2

k)
(
η2 k4 +

γ

λ2 k2 + 1 + γ
)

subject to a0
2 +

∑
k ak = y0.

The necessary optimality conditions yield a LAGRANGE multiplier µ such that

• (1 + γ)a0 +
1
2µ = 0 and for k ∈ {1, 2, 3, ...}

2
(
η2 k4 +

γ

λ2 k2 + 1 + γ
)

ak +µ = 0,

2
(
η2 k4 +

γ

λ2 k2 + 1 + γ
)

bk = 0.

• Thus bk = 0, a0
2 = − 1

2(1+γ)
µ
2 and ak = − 1

η2 k4+ γ

λ2 k2+1+γ
µ
2.

• This yields y(t) = −µ
2

[
1

2(1+γ) +
∑
k

1
η2 k4+ γ

λ2 k2+1+γ cos(k t)
]
. Thus y is twice

continuously differentiable and y ′(0) = 0. The |curvature| decays at 0!

Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 17



An example with H2 objective

A 1d-example: The transformed optimal control problem is

min
1 + γ

2
a2

0 +
∑

k

(a2
k + b2

k)
(
η2 k4 +

γ

λ2 k2 + 1 + γ
)

subject to a0
2 +

∑
k ak = y0.

The necessary optimality conditions yield a LAGRANGE multiplier µ such that

• (1 + γ)a0 +
1
2µ = 0 and for k ∈ {1, 2, 3, ...}

2
(
η2 k4 +

γ

λ2 k2 + 1 + γ
)

ak +µ = 0,

2
(
η2 k4 +

γ

λ2 k2 + 1 + γ
)

bk = 0.

• Thus bk = 0, a0
2 = − 1

2(1+γ)
µ
2 and ak = − 1

η2 k4+ γ

λ2 k2+1+γ
µ
2.

• This yields y(t) = −µ
2

[
1

2(1+γ) +
∑
k

1
η2 k4+ γ

λ2 k2+1+γ cos(k t)
]
. Thus y is twice

continuously differentiable and y ′(0) = 0. The |curvature| decays at 0!

Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 17



An H2 example (continued)

What does the trajectory look like?

y(t) =

[
1

2(1 + γ)
+
∑

k

1
η2 k4 + γ

λ2 k2 + 1 + γ
cos(k t)

]
.

If η = γ
2
√

1+γ λ2 for a = (1+γ)1/4
√
η this implies

η y ′′(t) +
√

1 + γ y(t) = 1√
1+γ

π a
2 sinh(π a) cosh(a(t − π)) [Hidden turnpike +trigonomet.?].

1
4 + 1

1+(1+12)2 cos(x) + 1
1+(1+22)2 cos(2x) + · · · + 1

1+(1+162)2 cos(16x)
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An example with L1-tracking term

For T ≥ 1 and γ > 0 we consider the problem

(OC)T


min

u∈L2(0,T )

T∫
0

1
2|u(t)|

2 + γ |y(t)| dt subject to

y(0) = −1,
y ′(t) = y(t) + u(t).

The problem without initial conditions is

(S)

 min
u∈L2(0,T )

T∫
0

1
2|u(t)|

2 + γ |y(t)| dt subject to

y ′(t) = y(t) + u(t).

The solution of (S) is the turnpike! Here the turnpike is zero, y (σ) = 0 and u(σ) = 0.
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An example with L1-tracking term
Solution of the problem without terminal constraint

• Variation of constants yields y(t) = et
[
−1 +

∫ t
0 e−s u(s) ds

]
.

•

(OC)T

{
min

u∈L2(0,T )

T∫
0

1
2|u(t)|

2 + γ et
∣∣∣1− ∫ t

0 e−s u(s) ds
∣∣∣ dt

In the problem we have no terminal conditions!
• Consider the time-horizon T as a parameter.

For τ ∈ (0,T ], consider the parametric optimal control problem (OC)τ .
As long as y(τ ) ≤ 0, we can get rid of the absolute value and thus of the
non-smoothness!
• So for sufficiently small τ > 0, we consider

(OC)τ min
u∈L2(0,τ)

τ∫
0

1
2u(t)2 + γ et

(
1−

∫ t
0 e−s u(s) ds

)
dt .

• Integration by parts allows to transform the objective function:

(OC)τ min
u∈L2(0,τ)

τ∫
0

1
2

u(t)2 + γ
(
1− eτ−t) u(t) dt + γ (eτ − 1)
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An example with L1-tracking term
Solution of the problem without terminal constraint

• Variation of constants yields y(t) = et
[
−1 +

∫ t
0 e−s u(s) ds

]
.

•

(OC)T

{
min

u∈L2(0,T )

T∫
0

1
2|u(t)|

2 + γ et
∣∣∣1− ∫ t

0 e−s u(s) ds
∣∣∣ dt
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For τ ∈ (0,T ], consider the parametric optimal control problem (OC)τ .
As long as y(τ ) ≤ 0, we can get rid of the absolute value and thus of the
non-smoothness!
• So for sufficiently small τ > 0, we consider

(OC)τ min
u∈L2(0,τ)

τ∫
0

1
2u(t)2 + γ et

(
1−

∫ t
0 e−s u(s) ds

)
dt .

• Integration by parts allows to transform the objective function:

(OC)τ min
u∈L2(0,τ)

τ∫
0

1
2

u(t)2 + γ
(
1− eτ−t) u(t) dt + γ (eτ − 1)

Martin Gugat · FAU · Some remarks on the turnpike property INdAM 2020 21



An example with L1-tracking term

Solution of the problem without terminal constraint

• Integration by parts allows to transform the objective function:
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τ∫
0

1
2

u(t)2 + γ
(
1− eτ−t) u(t) dt + γ (eτ − 1)

• Then the necessary optimality conditions imply

u(t) = −γ
(
1− eτ−t) .

• For such a control
∫ s

0 e−t u(t) dt = 1 holds if

γ =
1

cosh(s)− 1
.

Hence for τ = s we have y(s) = 0 and u(s) = 0. For t > s we can continue with
u(t) = 0 and obtain the optimal control for (OC)T for all T ≥ s!
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An example with L1-tracking term

Lemma (solution of (OC)T , the problem without terminal conditions).

For γ > 0, define s > 0 as the value where cosh(s) = 1
γ + 1.

Assume that T ≥ s. Define
û(t) = γ(es−t − 1)+.

Then for the state ŷ generated by û for t ≥ s we have ŷ(t) = 0.
Moreover, for all t ∈ (0,T ) we have ŷ(t) ≤ 0.
The control û is the unique solution of (OC)T .

The optimal state is y(t) = et
[
−1 + γ

(
es−es−2t

2 + e−t − 1
)]
−
.

The optimal state for s = 1 The optimal control for s = 1
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An example with L1-tracking term

The optimal state and control for s = 2 and γ = 1
cosh(s)−1.

The weight γ for the non-smooth tracking term is made smaller than for s = 1.
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An example with L1-tracking term

The exact turnpike phenomenon

• For sufficiently large T , due to the L1-norm of y that appears in the objective
function, the solution has a finite–time turnpike structure:
The system is steered to zero in the finite stopping time s.

• This time s is independent of T and only depends on γ.
• Both state and control remain at zero for all t ∈ (s, T ).
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An example with L1-tracking term
For T sufficiently large, we can add a terminal condition:

For T ≥ 1 and γ > 0 we consider the problem

(FROMATOB)T

 min
u∈L2(0,T )

T∫
0

1
2|u(t)|

2 + γ |y(t)| dt subject to

y(0) = −1, y(T ) = 1, y ′(t) = y(t) + u(t).

The problem decouples into (OC)s (the problem without terminal condition) on
[0, s] and on the remaining time interval

[s,T ] we consider the problem without initial condition and starting time s

(END)s

 min
u∈L2(s,T )

T∫
s

1
2|u(t)|

2 + γ |y(t)| dt subject to

y(T ) = 1, y ′(t) = y(t) + u(t), t ∈ [s, T ].

For the starting time s if cosh(T − s)− 1 = 1/γ, the optimal control of (END)s is
u2(t) = γ (1− es−t)+.
Then we have y(s) = 0 and y(t) = et−T [1− γ(es−T−eT+s−2t

2 + eT−t − 1)].
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An example with L1-tracking term

The solution of (OC)s reaches the turnpike after finite stopping time s = sstop

The solution of (END)s leaves the turnpike after the finite starting time s = sstart .
Hence if sstop ≤ sstart , the solutions can be glued together to solve (FROMATOB)T

if T is sufficiently large, e.g. 1
γ ∈ (0, cosh(T/2)− 1)

(then sstop ≤ T/2 ≤ sstart).

This is the finite-time turnpike situation:
From a given initial state, the optimal state is driven to the turnpike in finite time.
Then it stays on the turnpike for a finite time interval.
Wir fahr’n fahr’n fahr’n auf der Autobahn
Wir fahr’n fahr’n fahr’n auf der Autobahn
Wir fahr’n fahr’n fahr’n auf der Autobahn
Text of the Song by Kraftwerk

If the prescribed terminal state is different from the turnpike,
the state finally leaves the turnpike to reach the target state.
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An example

Let γ = 1
cosh(1)−1. Then sstop = 1 and sstart = T − 1.

Assume that T is sufficiently large that cosh(T/2)− 1 > 1/γ, that is T > 2.
Then for the optimal control and the optimal state we have

u(t) = 0, y(t) = 0 for all t ∈ [1, T − 1].

This is the finite-time turnpike situation.
On [0, T ] the control u is continuous and the state is continuously differentiable.

The optimal control
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Numerical examples for min
∫

1
2 u2 + |u|+ γ|y | with the

nonautomous system y ′(t) = y(t) + etu(t), y(0) = −1
by Michael Schuster
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Numerical examples for a nonautomous system
by Michael Schuster: y ′(t) = y(t) + etu(t)
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Paper on the Finite-Time Turnpike Phenomenon

The Finite-Time Turnpike Phenomenon for Optimal Control Problems:
Stabilization by Non-Smooth Tracking Terms,

M. GUGAT, M. SCHUSTER, E. ZUAZUA, in
Stabilization of Distributed Parameter Systems: Design Methods and Applications,
ALEXANDER ZUYEV, GRIGORY SKLYAR eds., vol. 2 of SEMA SIMAI Springer Series
(2021) 17–41. arXiv:2006.07051

• Contains also results for infinite-dimensional linear systems with L∞ and L2-norm
tracking terms.
• Obviously, the finite-time turnpike phenomenon can only occur for systems that

are exactly controllable in the sense that the turnpike is reachable.
• However, this also happens for systems that are nodal profile exactly controllable

if the turnpike is prescribed through the nodal profiles in the objective function.
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Transregio 154 Mathematical modelling, simulation
and optimization using the example of gas networks
Project C03: Nodal control and the turnpike phenomenon (with RÜDIGER SCHULTZ)

Here the system dynamics on a single pipe is described by the
isothermal Euler equations
ρt + qx = 0

qt +
(

p + q2

ρ

)
x
= − fg

2δ
q|q|
ρ

or a similar (semilinear) model.
The gas pressure is increased at compressor stations.

See the results of DFG CRC 154:
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Literature about the turnpike phenomenon

• Non-smooth tracking terms: The finite-time turnpike phenomenon is possible.

Smooth tracking terms: The classical turnpike phenomenon

1. Exponential turnpike result (with C0 and µ > 0 independent of T ):

‖u(τ )− uσ‖2 + ‖y(τ )− yσ‖2 ≤ C0 [exp(−µτ ) + exp(−µ(T − τ ))]

For pdes with distributed control by PORRETTA and ZUAZUA (SICON 2013), and TRELAT,
ZHANG, ZUAZUA (SICON 2018 in Hilbert space)
For nonlinear ODEs TRELAT, ZUAZUA in Journal of Differential Equations, 2015

2. Another team: LARS GRüNE and ANTON SCHIELA from Bayreuth,
MANUEL SCHALLER and KARL WORTHMANN from Ilmenau and
TIMM FAULWASSER from Dortmund.
See for example Abstract nonlinear sensitivity and turnpike analysis and an application to
semilinear parabolic PDEs ESAIM: COCV 27 (2021) 56.
They often consider a characterization by dissipativity inequalities with a storage function
and a supply function.

3. ALEXANDER ZASLAVSKI (Technion). Many books!
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Literature about the turnpike phenomenon
Weakest property: Measure turnpike property.

It holds if the measure of the set where the distance between the optimal state and
the turnpike is greater than a given bound is uniformly bounded independently of the
time horizon.

Intermediate: Integral turnpike

see for example GUGAT, HANTE, (SICON 2019). Boundary control for linear 2× 2
hyperbolic systems.
It holds when an integral norm of that measures the distance to the turnpike is
uniformly bounded independently of the time horizon.

Turnpike Property with Interior Decay, GUGAT, (MCSS 2021)

The turnpike property with interior decay requires that there exist C1 > 0 and
λ1 ∈ (0, 1) such that for all λ ∈ (0, 1) and all T sufficiently large we have∫ λT+λ1(1−λ)T

λT−λ1 λT
‖ŷ0(0,T , y0, yd)(s)− y (σ)‖2 ds ≤ C1

min{λ, (1− λ)}T
.

The subinterval of [0, T ] has the length λ1T .
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Literature about the turnpike phenomenon

Strongest Property: Exponential turnpike as above and e.g. GUGAT, TRELAT,
ZUAZUA, Optimal Neumann control for the 1D wave equation (2016).

Finite horizon T ≥ 2, γ > 0. Define (P):



min
u∈L2(0,T )

T∫
0
(yx(t , 0))2 + γ u2(t) dt subject to

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, 1)

y(t , 0) = 0, yx(t , 1) = u(t) , t ∈ (0,T )

ytt(t , x) = yxx(t , x), (t , x) ∈ (0,T )× (0, 1),

y(T , x) = 0, yt(T , x) = 0, x ∈ (0, 1).

Solution of (P), Syst. & Control Lett.
2016 (with E. TRÉLAT, E. ZUAZUA)

The unique solution of (P) is the sum
of 2 parts that grow/decay
exponentially. Choose zγ with
z2
γ + (2 + 4

γ) zγ + 1 = 0.

For t ∈ (0, 2) let

H(t) =


y ′0(1−t)−y1(1−t)

2 , t ∈ (0, 1),

y ′0(t−1)+y1(t−1)
2 , t ∈ [1, 2).

For t ∈ (0, 2), k ∈ N0, t + 2k ≤ T :

u(t + 2k) =
(

zk
γ − 1

zk
γ

)
1+zγ
1−zγ

H(t).This is an exponential turnpike structure!
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Conclusion

• If the optimal control problems have the turnpike property, numerical methods
can be started by using the static optimal state/control as a starting point.
The quality of this approximation is good close to T/2.

Thank you for your attention!

Weiningen, Schweiz
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