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Introduction

Noise is ubiquitous in neurons and its functional role is not yet fully understood. Stochastic analysis has
thus emerged as an important tool to handle the overwhelming dynamical complexity of these cells and to
gain a better understanding of their spiking and information processing mechanisms from the dynamics of
their model equations. Here, we prove that under multiplicative Brownian motion, there exists a global
random pullback attractor for the FitzHugh-Nagumo (FHN) neuron model (a paradigmatic model for
biological neurons) in the excitable regime.

Structure of the stochastic FHN neuron model and its dynamicsdvt = (vt −
v3
t

3
− wt + I)dt = f (vt, wt)dt,

dwt = ε(vt + α− βwt)dt + h(wt) ◦ dBt = εg(vt, wt)dt + h(wt) ◦ dBt.
(1)

I (vt, wt) ∈ R2 represent the voltage v and the recovery current w of the neuron.

I 0 < ε� 1 is the timescale separation parameter, I is the input stimulus, α is constant parameter, β a
co-dimension one Hopf bifurcation parameter with the Hopf value at β = βh(ε).

I ◦dBt stands for the Stratonovich stochastic integral w.r.t the Brownian motion Bt with amplitude
h(wt) = σ0wt (multiplicative noise) and models the random opening and closing of the ion channels.

I In the adiabatic limit ε→ 0, the deterministic critical manifoldM0 (red cubic in the figure)
defining the set of equilibria of the layer problem associated to Eq.(1) is

M0 :=
{

(vt, wt) ∈ R2 : f (vt, wt) = 0
}
. (2)

I M0 changes its stability at the fold points (vf , wf ) defined by its Jacobian scalar

(vf , wf ) :=
{

(vt, wt) ∈ R2 : ∂vtf (vt, wt) = 0
}
. (3)

I The excitable regime [2] of the neuron is characterized by existence of a deterministic, unique,
and stable equilibrium state (ve, we) given for Eq.(1) by

(ve, we) :=
{

(vt, wt) ∈ R2 : f (vt, wt) = g(vt, wt) = 0, (1/β − 1)3 + 9(α/β − I)2/4 > 0,

‖β − βh(ε)‖ ≤ δ > 0, ve < vf

}
. (4)

I To investigate the asymptotic behavior of the neuron under the influence of noise, we first check the
effect of the noise amplitude on the spiking. The figure shows a random trajectory (in blue) of Eq. (1)
in the excitable regime around the deterministic attractor at (ve, we) = (−1.00125,−0.401665),
i.e., the unique intersection point of M0 and the wt-nullcline (green line in the figure) of Eq.(1).
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The existence of a random pullback attractor

I With a Brownian motion Bt defined on the probability space (Ω,F ,P), (ve, we) in Eq.(4) is no longer
the equilibrium state of the neuron in Eq. (1). Instead, we need to find the global asymptotic state as
a compact random set A(ω) ∈ R2 depending measurably on ω ∈ Ω such that A is invariant under ϕ,
i.e., ϕ(t, ω)A(ω) = A(θtω), and attracts all other compact random sets D(ω) in the pullback sense,
i.e.,

lim
t→∞

d(ϕ(t, θ−tω)D(θ−tω)|A(ω)) = 0, (5)

where d(B|A) is the Hausdorff semi-distance. Such a structure is called a random pullback
attractor [1,3,4] with Ω chosen as C0(R,R) — the space of continuous real functions on R which
are zero at zero and equipped with the compact open topology given by the uniform convergence on
compact intervals in R, F as B(C0) — the associated Borel-σ-algebra, P as the Wiener measure, and
θt(·) : Ω→ Ω satisfying the group property, i.e., θt+s = θt ◦ θs for all t, s ∈ R, and is P-preserving,
i.e., P(θ−1

t (A)) = P(A) for every A ∈ F , t ∈ R.

Theorem [M.E. Yamakou et al. (2019)]

In the probabilistic setting above, there exists a unique solution of Eq. (1) which generates a random
dynamical system. Moreover, Eq. (1) in the excitable regime, possesses a global random pullback attractor.

Proof

We introduce the transformation

Yt = (vt, ω̄t)
T :=

(
1 0
0 e−σ0zt

)
Xt = T (zt)Xt, (6)

where zt is the unique stationary solution of the Ornstein-Uhlenbeck equation

dzt = −ztdt + dBt. (7)

Proof continued

This transforms system Eq. (1) into a random differential equation{
v̇t = vt −

v3
t
3 − e

σ0ztω̄t + I,

˙̄ωt = e−σ0ztεvt + (σ0zt − εβ)ω̄t + εαe−σ0zt,
(8)

or equivalently
Ẏt = G(zt,Yt), (9)

where G satisfies G(zt, 0) = (I, εαe−σ0zt)T and

〈Y1 −Y2, G(zt,Y1)−G(zt,Y2)〉 = (v1 − v2)2
[
1− 1

3
(v2

1 + v1v2 + v2
2)
]

+ (σ0zt − εβ)(w̄1 − w̄2)2

+(εe−σ0zt − eσ0zt)(v1 − v2)(w̄1 − w̄2)

≤ (v1 − v2)2 − 1

12
(v1 − v2)4 +

1

2εβ
(εe−σ0zt − eσ0zt)2(v1 − v2)2

+(σ0zt −
εβ

2
)(w̄1 − w̄2)2

≤ − 1

12
(v1 − v2)4 + (σ0zt −

εβ

2
)‖Y1 −Y2‖2

+
[
1 +

1

2εβ
(εe−σ0zt − eσ0zt)2 − σ0zt +

εβ

2

]
(v1 − v2)2

≤ − 1

12

(
(v1 − v2)2 + 6

[
1 +

1

2εβ
(εe−σ0zt − eσ0zt)2 − σ0zt +

εβ

2

])2

+3
[
1 +

1

2εβ
(εe−σ0zt − eσ0zt)2 − σ0zt +

εβ

2

]2

+(σ0zt −
εβ

2
)‖Y1 −Y2‖2

≤ 3
[
1 +

1

2εβ
(εe−σ0zt − eσ0zt)2 − σ0zt +

εβ

2

]2

+(σ0zt −
εβ

2
)‖Y1 −Y2‖2.

Thus,

d

dt
‖Yt‖2 = 2〈Yt − 0, G(zt,Yt)−G(zt, 0)〉 + 2〈Yt, G(zt, 0)〉

≤ 3
[
1 +

1

2εβ
(εe−σ0zt − eσ0zt)2 − σ0zt +

εβ

2

]2
+ (σ0zt −

εβ

2
)‖Yt‖2 + 2〈Yt, G(zt, 0)〉

≤ 3
[
1 +

1

2εβ
(εe−σ0zt − eσ0zt)2 − σ0zt +

εβ

2

]2
+

4

εβ
‖G(zt, 0)‖2 + (σ0zt −

εβ

4
)‖Yt‖2

≤ 3
[
1 +

1

2εβ
(εe−σ0zt − eσ0zt)2 − σ0zt +

εβ

2

]2
+

4

εβ

[
I2 + ε2α2e−2σ0zt

]
+ (σ0zt −

εβ

4
)‖Yt‖2

≤ p(zt) + q(zt)‖Yt‖2.
Hence by the comparison principle, ‖Yt‖2 ≤ Rt whenever ‖Y0‖2 ≤ R0 where Rt is the solution of

Ṙt = p(zt) + q(zt)Rt, (10)

which can be computed explicitly as

Rt(ω,R0) = e
∫ t

0 q(zu(ω))duR0 +

∫ t

0
p(zs(ω))e

∫ t
s q(zu(ω))duds.

It is then easy to check that the vector field in Eq.(9) satisfies the local Lipschitz property and the solution
is bounded and thus of linear growth on any fixed time interval [0, T ]. Hence there exists a unique solution
of Eq.(9) with initial condition, which also proves the existence and uniqueness of the solution of Eq.(8)
and Eq. (1). Also, the solution generates a random dynamical system. On the other hand, observe that by
the Birkhorff ergodic theorem, there exists almost surely

lim
t→−∞

1

t

∫ 0

t
q(zu)du = lim

t→−∞
1

t

∫ 0

t
q(z(θuω)) = E

[
σ0z(·)− εβ

4

]
= −εβ

4
< 0,

therefore there exists a unique stationary solution of Eq.(10) which can be written in the form

R̄(ω) =

∫ 0

−∞
p(zs(ω))e

∫ 0
s q(zu(ω))duds.

Moreover, ‖Yt(ω,Y0)‖2 ≤ R̄(θtω) whenever ‖Y0‖2 ≤ R̄(ω) and

lim sup
t→∞

‖Yt(θ−tω,Y0)‖2 ≤ lim sup
t→∞

Rt(θ−tω,R0) = R̄(ω).

Hence, the ball B(0, R(ω)) is actually forward invariant under the random dynamical system generated by
Eq.(8) and is also a pullback absorbing set. By applying H. Crauel [3], there exists a random attractor for
Eq.(8). Due to the fact that zt is the stationary solution of Eq.(7), it is easy to see that the random linear
transformation T (zt) given in Eq.(6) is tempered i.e.,

0 ≤ lim
t→∞

1

t
log ‖T (zt)‖ = lim

t→∞
1

2t
log(1 + e−2σ0zt) ≤ lim

t→∞
1

2t
(1 + 2σ0|zt|) = 0.

Therefore, it follows from [4] that systems Eq. (1) and Eq.(8) are conjugate under the tempered
transformation in Eq.(6), hence there exists also a global random pullback attractor for Eq. (1) �.

Future research and perspectives

I Establish the corresponding theorem for an independent time-correlated α-stable Lévy motion with
discontinuous probability distributions and infinite second moment.

I The structure and dynamics of random attractors are still open problems and their detailed
understanding would certainly shed more light on the complex spiking and information processing
mechanisms in biological neurons [1,2].
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