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Introduction

There is a growing interest in modern highly flexible light structures – e.g. robotic arms,
flexible aircraft wings, wind turbine blades, large spacecraft structures [1] – which exhibit
motions of large magnitude, not negligible in comparison to the overall dimensions of the
object. In engineering applications, there is also a clear need to control and eliminate
vibrations in these structures.

To capture large motions, one needs so-called geometrically exact beam
models (or networks of such beams), which are then nonlinear.

Dynamics of a geometrically exact beam
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Two frameworks:

Quasilinear second-order
(Reissner ’81, Simo ’85)

‘Wave-like’

Semilinear (quadratic)
first-order hyperbolic

(Hodges ’03)
‘Hamiltonian framework’

Framework 1. The state is (p,R), expressed in some fixed coordinate system {ej}3j=1,
centerline’s position p(x, t) ∈ R3

cross sections’ orientation given by the columns bj of R(x, t) ∈ SO(3).

Set in (0, `)× (0, T ), the governing system reads (freely vibrating beam)
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]
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(∂xp̂)R 0

]
z, (1)

given M(x),C(x) ∈ S6++ the mass and flexibility matrices and κ(x) ∈ R3 the curvature
before deformation, and where v, s depend on (p,R):

v =

[
Rᵀ∂tp

vec (Rᵀ∂tR)

]
, z = C−1

[
Rᵀ∂xp− e1

vec (Rᵀ∂xR)− κ

]
. (2)

Framework 2. The state is y =

[
v
z

]
, expressed in the moving basis {bj}3j=1,

linear and angular velocities v(x, t) ∈ R6

internal forces and moments z(x, t) ∈ R6.

Set in (0, `)× (0, T ), the governing system reads (freely vibrating beam)
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denoting by v1, z1 and v2, z2 the first and last 3 components of v, z.

Notation. Cross-product: û ζ = u× ζ (thus û skew-symmetric).

For any skew-symmetric u ∈ R3×3, vec(u) ∈ R3 is such that u = v̂ec(u).

SO(3): rotation matrices. Sn++: positive definite symmetric matrices of size n.

Nonlinear transformation from (1) to (3)

One may move from one framework to the other via

T :

{
C2
x,t

(
R3 × SO(3)

)
−→ C1

x,t

(
R12
)

(p,R) 7−→ y (defined by (2)).

Theorem ([2], [4]). Under some compatibility conditions on the initial and boundary
data of (1) and (3), T : E1→ E2 is bijective for some E1, E2 involving the last 6
equations in (3), the Dirichlet conditions (if any) and the (zero-order) initial conditions.

This allows us to translate some results on (3) into results on (1)
(can be extended to networks).

Networks
N beams indexed by i ∈ I := {1, . . . , N}, the state becomes (pi,R)i∈I or (yi)i∈I.
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Interface conditions:

continuity of the centerlines, rigid joints

Kirchhoff condition
(balance of forces and moments).

Local exponential stabilization for star-shaped networks
Boundary feedback control. At all simple nodes, we apply controls of the form
νizi = −Kivi with Ki ∈ S6++ (where νi(x) is the outward pointing normal).
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Let Hk
x :=

∏
i∈IH

k(0, `i;R12).

Theorem ([2], [3]). For any k ∈ {1, 2}, there exist β, η > 0 such that for all initial
data y0 = (y0i )i∈I small enough in Hk

x, there exists a unique global in time solution
y := (yi)i∈I ∈ C0([0,+∞);Hk

x) to the (3)-network, and

‖y(·, t)‖Hk
x
≤ ηe−βt‖y0‖Hk

x
, for all t ∈ [0,+∞).

Idea of the proof. (Quadratic Lyapunov functional, Bastin, Coron ’16)

From the energy of the beam E =
∑

i∈I
∫ `i
0

〈
yi , Q

P
i yi
〉
dx, we build, for some ρ > 0,

wi ∈ C1([0, `i]) and Wi = Wi(Mi,Ci):

L =
∑
i∈I

k∑
α=0

∫ `i

0

〈
∂αt yi ,

(
ρQPi + wi

[
0 Wi

W ᵀ
i 0

])
∂αt yi

〉
dx.

Nodal profile control for networks with loops
For an A-shaped network, where zi is controlled at the simple nodes 4, 5, let T be the
transmission time from the node 1 to the controlled nodes, and any T > T ∗ > T .

At the node 1, the state follows some given profiles

in C1([T ∗, T ];R12) over the time interval [T ∗, T ].
(4)

Aim:

Theorem ([4]). There exists ε0 > 0 such that for all ε ∈ (0, ε0), for some δ > 0, and
for all initial and boundary data and nodal profiles with C1 norm less than δ, there exist
C1 controls of norm less than ε, such that the (3)-network admits a unique solution
(yi)i∈I ∈

∏N
i=1C

1
x,t(R12), of norm less than ε and fulfilling (4).
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Idea of the proof. (Constructive method, Li, Rao ’02,’03)

1. forward problem until T , and at node 1 connect this solution to the nodal profile to
obtain ‘initial data’ for the next step,

2. series of forward and sidewise problems. Controls are given by the trace at nodes 4, 5.

Outlook
• Global in time well-posedness (possibly adding structural damping), larger initial data.

• Stability: remove one of the controlled nodes, control less components of the state.

• Nodal profile control: result valid for any network, necessary and sufficient conditions.
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