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1. Why long time ?
Many applications of control impose considering problems in long time intervals explicitly :
the treatment of chronic diseases, like hypertension and diabetes, for instance.

(a) Blood flow. (b) Boat in a narrow

channel (bilateral

constraints).
Figure 1.

In others, large time is not required explicitly, but it is implicitly needed to fulfill the control
requirements such as, for instance, state of control constraints, as in Figure 1.(b), where
the boat across a narrow channel has to slow down to avoid crashing into the walls.

2. Minimal time to control under constraints
Consider the heat equation controlled from the boundary

yt −∆y = 0 in(0, T )× Ω

y = u on(0, T )× ∂Ω

y(0, x) = y0(x), inΩ

(1)

Our goal is to control this system to a steady state y1

y(T, x) = y1(x), x ∈ Ω,

under the constraint
u(t, x) ≥ 0, (t, x) ∈ (0, T )× ∂Ω.

The above problem is solvable under appropriate conditions on the data (y0 and y1 being
positive steady states, for instance) and provided that time is sufficiently large. The method
of proof combines local controllability, with a global “stair-case argument” (see [PZ2018]).
Even though the constraints are of unilateral type, the large-time assumption is in fact
necessary (e.g. [LTZ2017] and [PZ2018]). The minimal controllability time is positive

Tmin := inf
{
T > 0

∣∣ ∃ u ≥ 0, y(T, ·) = y1

}
> 0,

and, often, if Tmin <∞.
We sketch the transposition method introduced in [PZ2018] (adaptable to the semilinear
case). To fix ideas, suppose y0 ≡ 0. By transposition, the state y associated to a control
u is characterized by the duality identity∫

Ω

y(T, x)ϕ0dx +

∫ T

0

∫
∂Ω

u
∂ϕ

∂n
dσ(x)dt = 0, (2)

where ϕ is the solution to the adjoint problem:
−ϕt −∆ϕ = 0 in(0, T )× Ω

ϕ = 0 on(0, T )× ∂Ω

ϕ(T, x) = ϕ0(x). inΩ

The existence of a special final datum ϕ0 (Figure 2) and some time T0 > 0, such that{
∂ϕ
∂n ≤ 0 on (0, T0)× ∂Ω∫

Ω y1ϕ
0dx < 0,

leads to Tmin ≥ T0 > 0.
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(a) Final datum. (b) Backward evolution of the adjoint state.

Figure 2.

Enrique Zuazua
Chair in Applied Analysis – AvH-Professorship,

Friedrich-Alexander-University Erlangen-Nürnberg

3. The turnpike phenomenon
Consider the time-evolution optimal control problem

min
u∈L2((0,T )×ω)

JT (u) =
1

2

∫ T

0

∫
ω

|u|2dxdt +
1

2

∫ T

0

∫
ω0

|y − z|2dxdt, (OCP )T

where: 
yt −∆y + f (y) = uχω in(0, T )× Ω

y = 0 on(0, T )× ∂Ω

y(0, x) = y0(x) inΩ.

The nonlinearity f is assumed to be C3 increasing, with f (0) = 0, whence with u = 0 the
solution decays exponentially, thus avoiding blow-up. ω ⊆ Ω is the control domain, while
ω0 ⊂ Ω is the observation domain. By dropping the time-dependence, we get the steady
problem

min
us∈L2(ω)

Js(us) =
1

2

∫
ω

|us|2dx +
1

2

∫
ω0

|ys − z|2dx, (OCP )s

where: {
−∆ys + f (ys) = usχω inΩ

ys = 0 on∂Ω.

Figure 3. Norms of steady and time-evolution optimal controls.

By the Direct Method in the
Calculus of Variations, there ex-
ists an optimal control u mini-
mizing Js. The corresponding
optimal state is denoted by y.
If ‖z‖L∞(ω0) is small enough, the
steady problem admits a unique
optimal control [PZ2016].
The control problem enjoys the
turnpike property if for any op-
timal pair

(
uT , yT

)
for the time-

evolution problem, there exists an optimal pair (u, y) for the steady problem, s. t.

‖uT (t)− u‖L∞(ω) + ‖yT (t)− y‖L∞(Ω) ≤ K
[
e−µt + e−µ(T−t)

]
,

By linearizing the optimality system around the steady optimum and a fixed point argu-
ment, A. Porretta and E. Zuazua proved [PZ2016] the existence of δ > 0, such that the
turnpike property holds, under the smallness conditions

‖y0‖L∞(Ω) ≤ δ and ‖z‖L∞(ω0) ≤ δ.

In [P2021], we have proved the existence of ρ > 0 such that if

‖z‖L∞(ω0) ≤ ρ,

for every initial datum y0 ∈ L∞ (Ω), the turnpike property holds.

4. Open problems and perspectives
We propose two open problems.

1. Develop complete turnpike theory for nonlinear control problems. For instance, for
(OCP )T , to the best of our knowledge, the case of large target z is still open. Note
that, for a special target z, there exist (at least) two optimal controls for the steady
problem (OCP )s, when the domain Ω is a ball.
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Figure 4. Plot of the steady functional with multiple minimizers versus constant controls.

2. Employ the turnpike phenomenon in value iteration algorithms of reinforcement
learning. These algorithms can be initialized with the value of the functional at
quasi-optimal turnpike strategies, consisting of three arcs: first, moving from the
initial datum to the turnpike, then remaining there for long time and finally leaving
at the end to match the terminal conditions.
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