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Overview
Parabolic evolution equations are a cornerstone in the mathematical modelling of irreversible
processes in the natural sciences and, in general, well understood. Still, there are many real-
world applications with inherently nonsmooth data where classical methods basing on
relatively smooth data fail to apply. Here, “nonsmooth data” may refer to the underlying
spatial domain Ω ⊂ R3, the coefficients, or the fact that (inhomogeneous) mixed
boundary conditions are given. Usually the models also consist of systems.

These challenges can be overcome within the framework of analytic semigroups or maximal
parabolic regularity by deriving precise information about fractional powers of
the associated operators and permanence principles for optimal elliptic regularity
as well as interpolation identities for function spaces in the context of mixed boundary
conditions. We list three real-world examples for which one obtains satisfying wellposedness
results using these techniques, and also optimal control considerations for one example.

Thermistor problem
Here we are concerned with the heating of a workpiece Ω ⊂ R3, made of a conducting
material such as steel, by means of direct current, so-called Joule heating. The associated
quasilinear heat equation with Robin boundary conditions describing the evolution
of the temperature θ is given by

θ′ − div(η(θ)κ∇θ) = (σ(θ)ρ∇ϕ) · ∇ϕ,
ν · η(θ)κ∇θ + αθ = αθl.

The forcing corresponds to the strength of the electric field induced by the potential ϕ
given by the potential equation with inhomogeneous mixed boundary conditions

− div(σ(θ)ρ∇ϕ) = 0,

{
ϕ = 0 on ΓD,

ν · σ(θ)ρ∇ϕ = u on ∂Ω \ ΓD

with ϕ = 0 on ΓD ⊂ ∂Ω representing grounding and the current (control) u on ∂Ω \ ΓD.
The thermistor problem is of importance e.g. in the process of steel hardening for gear
racks which are nonsmooth and nonconvex.

A gear rack as used in numerical simulations of the thermistor problem.

The particular challenge in the thermistor system is the combination of inhomoge-
neous mixed boundary conditions with the quasilinear coupling of temperature and
potential (thermistor effect). If Ω is a Lipschitz manifold compatible with ΓD
and η, σ are Lipschitz-continuous conductivity functions, and q > 3 is such that
− div(κ∇) : W 1,q(Ω) → W−1,q

0 (Ω) and − div(κ∇) : W 1,q
ΓD

(Ω) → W−1,q
ΓD

(Ω) are surjec-
tive (optimal elliptic regularity), then it is possible to eliminate the potential equation
in terms of θ and to rely on maximal parabolic regularity techniques for the resulting
quasilinear equation for θ to obtain: for every u ∈ L∞(0, T ;L3(∂Ω \ ΓD)) and r large
enough, there are unique local-in-time solutions

ϕ ∈ L∞(0, T ;W 1,q
ΓD

(Ω)), θ ∈ W 1,r(0, T ;W−1,q
0 (Ω)) ∩ Lr(0, T ;W 1,q(Ω)).

This allows to consider an associated optimal control problem with a desired tempera-
ture θd on Ωd ⊆ Ω at time T and control u, subject to control- and state constraints

min
(θ,u)

1

2

∫
Ωd

|θ(T )− θd|2 +
β

2
‖u‖2

H1(0,T ;L3(∂Ω\ΓD)) s.t.

{
umin ≤ u ≤ umax,

θ ≤ θmelt.

Keller-Segel model in chemotaxis
This model describes the evolution of the density u of cellular slime molds driven by a
chemo-attractant of concentration v which induces movement of the slime molds towards
higher concentrations of the attractant (chemotaxis). The attractant is degraded by
an enzyme of concentration p produced by the slime molds, from which a complex of
concentration w is created. This gives rise to a reaction-diffusion system for (v, p, w)
coupled with a Fokker-Planck type equation for u with drift induced by v:

u′ − ku∆u = −χ div(u∇v),

v′ − kv∆v = −r1vp + r−1w + rvu,

p′ − kp∆p = −r1vp + (r−1 + r2)w + rpu,

w′ − kw∆w = r1vp− (r−1 + r2)w,

subject to homogeneous Neumann conditions (experimental setting) and with given initial
concentrations. Under the assumption that Ω is a Lipschitz manifold and that there is
q > 3 such that −∆ + 1: W 1,q(Ω)→ W−1,q is surjective (optimal elliptic regularity),
we obtain the previously unknown result that for all nonnegative initial concentrations
smooth enough and r large, there exist unique nonnegative local-in-time solutions

u, v, p, w ∈ W 1,r(0, T ;Lq/2(Ω)) ∩ Lr(0, T ; domLq/2(∆)) ∩ L∞(0, T ;L∞(Ω)).

The main idea is to solve for (v, p, w) in dependence of u, and to re-insert in the first
equation, thereby obtaining a single, but nonlocal-in-time equation which can be dealt
with via maximal parabolic regularity. This wellposedness result is a starting point for
further investigations of the rich dynamics of this system.

Van Roosbroeck system of semiconductors
In the van Roosbroeck system for a semiconductor device Ω ⊂ R3, negative and positive
charge carriers, electrons and holes, move by diffusion and drift within a self-consistent
electrical field. Thereby, they recombine to charge-neutral electron-hole pairs or, vice
versa, split up from pairs to single charges. The evolution of the densities (u1, u2) of
electrons and holes is given by the current-continuity equations which are semilinear
Fokker-Planck equations with inhomogeneous mixed boundary conditions

u′k − div jk = rΩ(u1, u2, ϕ),

jk = µk
(
∇uk + (−1)kuk∇ϕ

) {
uk = Uk on ΓD,

ν · jk = rΓ(u1, u2, ϕ) on ΓN ,

for k = 1, 2. The recombination functions rΩ, rΓ depend on the material and include the
quadratic gradient case rΩ(u1, u2, φ) ∼ |∇u|2. The associated electrostatic potential is
subject to the potential equation with inhomogeneous mixed boundary conditions

− div (ε∇ϕ) = d + u1 − u2

{
ϕ = ϕΓD on ΓD,

ν · (ε∇ϕ) + εΓNϕ = ϕΓN on ΓN ,

A critical component here is the doping d which lives on a two-dimensional surface
embedded into the semiconductor device and which induces special charge flow properties.

←− Scheme of a ridge waveguide quantum
well laser with two material layers divided by the
dark plane. The top and bottom of the struc-
ture carry Dirichlet boundary conditions for the
electrostatic potential, with Neumann boundary
conditions for the rest (indicated by shading). At
the bottom, a triple quantum well structure cor-
responds to the doping d.

If Ω is a Lipschitz manifold compatible with ΓD, if there is q > 3 such that − div(ηk∇·)
and− div(ε∇·)+εΓN : W 1,q

ΓD
(Ω)→ W−1,q

ΓD
(Ω) are surjective (optimal elliptic regularity),

rΩ, rΓ are Lipschitz, and d ∈ H−3/q,q(Ω), then there exists a unique local-in-time solution

uk ∈ C1−τ/2([0, T ];Hτ−1,q
D (Ω)) ∩ C([0, T ];W 1,q

D (Ω)) ∩ C1((0, T ];Hτ−1,q(Ω))

for k = 1, 2 and some τ > 0. This follows from extrapolating optimal elliptic regu-
larity to the Bessel scale and classical analytic semigroup theory using fractional powers.
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