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Introduction
A key paradigm of deep learning is that of supervised learning, which addresses the
problem of predicting from labeled data, consisting in approximating an unknown function
f : X → Y from N known but possibly noisy data samples {~xi, ~yi}Ni=1 with ~xi ∈ X ⊂ Rd

and ~yi ∈ Y . We shall mostly concentrate on classification tasks, wherein
Y = {1, . . . ,m}.
The workhorse behind the recent successes of deep learning are models called neural
networks for approximating fapprox of the unknown function f ; these are parametrized
computational architectures which propagate each individual sample ~xi of the input data
across a sequence of affine parametric operators composed with simple nonlinearities.

Residual Neural Networks (ResNets)
In practice, one looks to use models wherein the compositions of nonlinearities and affine
parametric operators are iterated over multiple layers, namely deep neural networks. A
staple of such models are the so-called residual neural networks (ResNets) which may
often be cast as schemes of the mould{
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for all i ∈ {1, . . . , N}, wk
1 , w

k
2 ∈ Rd×d and Nlayers > 1 designates the number of layers

referred to as the depth.

Supervised learning via control of Neural ODEs
Due to the inherent dynamical nature of ResNets, several recent works have considered
an associated continuous-time formulation. This is motivated by the simple observation
that for T > 0, (1) is the forward Euler approximation of the neural ordinary differential
equation (neural ODE){

ẋi(t) = w1(t)σ(w2(t)xi(t) + b(t)) for t ∈ (0, T )

xi(0) = ~xi ∈ Rd.
(2)

One readily sees that the parameters w2, w1, b in the neural ODE play the role of
controls, and thus, the supervised learning problem may be seen as a compound and
high-dimensional simultaneous control problem.
The nonlinear nature of the activation function σ allows deforming half of the phase
space while the other half remains invariant, a property that classical models in mechanics
do not fulfill. This very property allows to build elementary controls inducing specific
dynamics and transformations whose concatenation, along with properly chosen
hyperplanes, allows achieving our goals in finitely many steps ([4]). This allows the neural
ODE flow to efficiently separate the dataset into respective classes, as seen below.
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The turnpike property
In [1], we propose the training problem consisting in minimizing

1

N

N∑
i=1

loss (Pxi(T ), ~yi) +
1

N

∫ T

0

‖xi(t)− xi‖2dt + ‖u‖2L2(0,T ;Rdu), (3)

where loss(·, ·) is continuous function which, in classification tasks (~yi ∈ {−1, 1}), is
usually loss(x, y) := ‖tanh(x)− y‖2 or loss(x, y) = log(1 + exp(−yx)), and
xi ∈ P−1({~yi}).
As each time-step of a discretization to (2) may be seen to represent a different layer of
the ResNet (1), the time horizon T > 0 in (2) may serve as an indicator of the number of
layers Nlayers in the discrete-time context (1). A good understanding of the dynamics of
the learning problem over longer time horizons would lead to potential rules for choosing
the number of layers, and enlighten the possible generalization properties when the
number of layers is large.

In [1,2] (see [3] for the L1–regularization case), under controllability assumptions on the
neural ODE (which are addressed in [4]), but without any smallness assumptions on the
data, targets, or smoothness assumptions on the dynamics (we only assume σ ∈ Lip(R)),
we conclude that the optimal controls uT = [w1,T , w2,T , bT ] and associated optimal
trajectories xT (·) satisfy

1

N

N∑
i=1

loss (PxT,i(t), ~yi) +
1

N
‖xT,i(t)− xi‖ 6 C e−µt (4)

and, moreover,
‖uT (t)‖ 6 Ce−µt (5)

for some constant C, µ > 0 independent of T and for all t ∈ [0, T ]. This is a
manifestation of the so-called turnpike property, well-known in optimal control and
economics.

Experiments
Fashion-MNIST is a dataset of article images, consisting of a training set of 60000
samples. Each sample is a 28× 28 image associated with a label from 10 classes.
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Figure 16. Example A.2: The decay of the training error (left) and
stabilization of optimal state trajectory (right) as stipulated by Theo-
rem 4.1.

Figure 17. Example A.2: We depict the evolution of two individual
samples xi(t) 2 R784 at times t 2 {0, 2, 8, 15, 20} (both sets of images
are grayscale, but a different colormap is used to enhance visibility). We
see that each trajectory stabilizes to some stationary configuration after
time t > 8.

solution to (3.3) associated to [w†
, b

†] and the initial datum x0. Let us prove that
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along the aforementioned subsequence. Take an arbitrary t 2 [0, T ]. Note that
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Top: The decay of the training error and stabilization of optimal state trajectories as stipulated by turnpike.

Bottom: The evolution of two individual samples xi(t) ∈ R784 at times t ∈ {0, 2, 8, 15, 20}. We see that

each trajectory stabilizes to some stationary configuration.

Outlook
In the above presented works, we have studied a variety of supervised learning tasks from
the continuous-time control theoretical perspective, allowing us to obtain fundamental
understanding of the working mechanisms and properties of deep learning. We have,
however, focused solely on supervised learning tasks, namely, wherein the dataset is
labeled. A major challenge which ought to be formulated and addressed in a more control
theoretical framework is the topic of unsupervised learning, wherein one only disposes of
unlabeled data {~xi}Ni=1.
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