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1. Bingham fluids
Consider the following system describing the steady state of an (homogeneous) incompress-
ible fluid:

αu− div(SSS− u⊗ u) +∇p = f in Ω,

divu = 0 in Ω, (1)

u = 0 on ∂Ω,

where u : Ω → Rd represents the velocity field, p : Ω → R is the pressure, SSS : Ω → Rd×d
sym

is the shear stress; f : Ω → Rd is a given body force and α ≥ 0 is a parameter that
arises from an implicit time discretisation. To close the system we need additionally a
constitutive law that relates the shear stress SSS to the symmetric velocity gradient DDD :=
DDD(u) = 1

2(∇u+∇u>). The motivation here is to study the Herschel–Bulkley constitutive
relation for viscoplastic fluids:

|SSS| ≤ τ∗ ⇐⇒ DDD(u) = 0,

|SSS| > τ∗ ⇐⇒ SSS = 2ν∗|DDD(u)|r−2DDD(u) + τ∗
DDD(u)

|DDD(u)|,
(2)

where r > 1, ν∗ > 0, and τ∗ ≥ 0 is the yield stress; this relation describes many fluids
that appear in nature and industry, such as drilling muds, waxy crude oil, mango jam, etc.
Note that (2) cannot be written in terms of a single-valued function SSS = S(DDD), but it can
be very naturally written implicitly, e.g. as:

GGG(SSS,DDD) := (|SSS| − τ∗)+SSS− 2ν∗|DDD|r−2(τ∗ + (|SSS| − τ∗)+)DDD = 0. (3)

The framework of implicitly constituted fluids allows for a clean proof of existence of
solutions, and avoids the use of tools such as variational inequalities.

2. Regularisation
The constitutive relation (3) is not differentiable, which leads to some difficulties when
performing numerical approximations. In practice, it is common to circumvent this by
using regularisations such as

SSSε = Sε(DDD) := 2ν∗|DDD|r−2DDD + τ∗
DDD√
|DDD|2 + ε2

ε > 0,

but a major drawback of this is that some unphysical behaviour is introduced, and e.g.
it is not clear whether SSSε → SSS as ε → 0. Here we advocate the use of an alternative
regularisation, introduced in [BMM2020], for which the (weak) convergence SSSε ⇀ SSS in
Lr
′
(Ω)d×d can in fact be established. It takes the very simple form

GGGε(SSS,DDD) := GGG(SSS− εDDD,DDD− εSSS) ε > 0. (4)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

|DDD|
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

|SS S
|

ǫ = 0

ǫ = 0.7

ǫ = 0.15

ǫ = 0.01

(a) Herschel–Bulkley relation (r = 1.7).
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(b) Bingham relation (r = 2.0).

Figure 1. Regularisation (4) for the relation (3) with τ∗ = 1.

It is known that weak solutions to the system (1)-(3) exist [BMM2020], and that finite
element solutions of the nonlinear system converge [FGS2020], but the solution of such
discrete nonlinear systems has not been studied in detail. Although the regularisation (4)
brings several advantages (e.g. the resulting graph is strictly monotone and 2-coercive,
even if the original graph does not have quadratic growth), it is not Fréchet-differentiable
and so a semismooth version of Newton’s method must be applied to solve the nonlinear
system. The development of such a method is the purpose of this work (see [Gaz21]).

3. Semismooth Newton Method
Let F : Z → X be a function between two Banach spaces, U a neighborhood of z ∈ Z,
and ∂F ⇒ L(Z;X) a set-valued function with ∂F (ẑ) 6= ∅ for all ẑ ∈ U . We say that F
is ∂F -semismooth (in the sense of Ulbrich [Ulb03]) if

sup
M∈∂F (z+h)

‖F (z + h)− F (z)−Mh‖X = o(‖h‖Z) as h→ 0. (5)

Assuming that GGG : Rd×d
sym × Rd×d

sym → Rd×d
sym and its local Lipschitz constant satisfy ap-

propriate growth conditions at infinity, we can prove that its associated Nemytskii op-
erator GGG : Lr

′
(Ω)d×d × Lr(Ω)d×d → Lq(Ω)d×d is ∂GGG-semismooth, where the elements

[d1,d2] ∈ ∂GGG are taken to be measurable selections of ∇GGG(SSS(·),DDD(u(·))), where ∇GGG is the
Clarke’s generalised gradient of GGG (which is defined for functions between finite-dimensional
spaces); note also that GGGε inherits these properties. Usually q < min{r, r′}, which is an
example of a norm-gap phenomenon that can result in some technical difficulties.
In addition, as with Newton’s method, one needs to guarantee the invertibility of the
derivative. In the present case, the uniform monotonicity of GGGε implies that the following
linear system can be solved with a uniform bound (with respect to the mesh size):

d1TTT + d2DDD(v) = HHH,

αv − div TTT +∇q = h,

div v = h,

where inertia was neglected for simplicity. Hence, if F (z) = 0 (with z = (SSS,u, p))
represents the system (1) with the regularised constitutive relation (4), by [Ulb03] we
get that the semismooth Newton iteration zk+1 ← zk − M−1

k F (zk), where Mk ∈ ∂F
is arbitrary, will converge (in an appropriate function space) locally superlinearly to the
solution.

4. Numerical experiments
The semismooth Newton method was analysed at the function space level in order to avoid
mesh-dependent behaviour of the iterations. This can be seen in Figure 2, where a problem
of flow between two plates was solved using a stabilised Pd×d0 –Pd1–P1 element. The method
also works well for a lid-driven cavity problem with moderately high values of τ∗ (see Figure
3).
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(c) ε = 0.5.
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(d) ε = 0.0001.

Figure 2. Mesh-independent behaviour

(e) τ∗ = 0.5. (f) τ∗ = 50.

Figure 3. Magnitude of SSS for the steady-state of a lid-driven cavity problem (r = 2, ε = 10−5).
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