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Geometry and physics of complex spatial structures

Nuclear matter 10-15m

Schuetrumpf, Klatt et al. PRC (2015)

Image courtesy: Hansma Lab, UCSB

Trabecular bone 10-2m

Klatt et al. Med. Phys. (2017)

Supernova

Remnants 1015m

Klatt, Mecke EPL (2019)

Biophotonic materials 10-6m

Wilts et al. Sci. Adv. (2017)

Nanostructured surfaces 10-9m

Spengler et al. Nanoscale (2019)

Foam-based photonic heterostructures 10-6-10-3m

Klatt, Steinhardt, Torquato PNAS (2019)

Flow through porous media 10-5m-100m

Scholz et al. PRE (2015)
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Minkowski functionals from integral geometry
Volume Surface area

Integrated mean curvature Euler characteristic
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Minkowski functionals from integral geometry
Volume Surface area

Integrated mean curvature Euler characteristic

Additive functionals: F (A ∪B) = F (A) + F (B)− F (A ∩B)
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Minkowski functionals from integral geometry
Volume Surface area

Integrated mean curvature Euler characteristic

Additive functionals: F (A ∪B) = F (A) + F (B)− F (A ∩B)

Hadwiger theorem (1957): Any additive, continuous, and motion invariant functional F on
the set of convex bodies is a linear combination of Minkowski functionals.
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Hidden long-range order
“Garden-variety” disorder Hyperuniformity

Klatt, Last, Yogeshwaran. Random Struct. Algor. 57, 2020
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Anomalous suppression of long-range density fluctuations
“Garden-variety” disorder Hyperuniformity

BB

For Vol[B] → ∞,

Var
�
#Particles

�
∼ Vol[B]
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Anomalous suppression of long-range density fluctuations
“Garden-variety” disorder Hyperuniformity

BB

For Vol[B] → ∞,

Var
�
#Particles

�
∼ Vol[B]

For Vol[B] → ∞,

Var
�
#Particles

�
∼ o (Vol[B])

“Isotropic like liquid—homogeneous like crystal”

Torquato. Phys. Rep. 2018
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Hyperuniform heterogeneous materials

Novel material design:

• Exponential decay of correlations

• Unique transport properties

• No dissipation of waves

Klatt, Torquato. Phys. Rev. E 2018 Torquato. Phys. Rep. 2018;
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Hyperuniform heterogeneous materials

Novel material design:

• Exponential decay of correlations

• Unique transport properties

• No dissipation of waves

Examples:

• Photoreceptor cells in eyes of chicken

• Random self-organization

• Active matter

Empirical Conjecture:
Hyperuniformity is a necessary condition
for photonic band gaps

Klatt, Torquato. Phys. Rev. E 2018 Torquato. Phys. Rep. 2018;
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Photonic band gaps of optimized networks

1. What are photonic band gaps? . 1. Klatt, Steinhardt, Torquato PNAS
116:23480, 2019

2. Foam + Photonics = Phoamtonics .
1. Klatt, Steinhardt, Torquato PNAS 116:23480, 2019

3. Universal gap sensitivity of optimized networks .
1. Klatt, Steinhardt, Torquato PRL 127:037401, 2021

4. Open problem: band folding . 1. Klatt,
Steinhardt, Torquato PNAS 127:037401, 2021
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Photonic crystals: “Semiconductors of light”
Propagation of light prohibited for a range of frequencies in all directions

Klatt, Steinhardt, Torquato. PNAS 116, 2019

Yablonovitch. PRL 58, 1987; John. PRL 58, 1987
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Computing photonic band gaps

Propagation of electromagnetic waves, including light, is goverend by Maxwell’s equations:

∇ ·H(r, t) = 0 ∇×E(r, t) + µ0
∂H(r, t)

∂t
= 0

∇ · [ε(r)E(r, t)] = 0 ∇×H(r, t)− ε0ε(r)
∂E(r, t)

∂t
= 0
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Computing photonic band gaps

Propagation of electromagnetic waves, including light, is goverend by Maxwell’s equations:

∇ ·H(r, t) = 0 ∇×E(r, t) + µ0
∂H(r, t)

∂t
= 0

∇ · [ε(r)E(r, t)] = 0 ∇×H(r, t)− ε0ε(r)
∂E(r, t)

∂t
= 0

with

r : position vector

t : time

H(r, t) : magnetic field

E(r, t) : electric field

ε0 : constant vacuum permittivity

µ0 : constant vacuum permeability

ε(r) : scalar dielectric function
where we here assume:

• no sources

• linear constitutive relations

• no material dispersion

• scalar dielectric function
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Computing photonic band gaps

Propagation of electromagnetic waves, including light, is goverend by Maxwell’s equations:

∇ ·H(r, t) = 0 ∇×E(r, t) + µ0
∂H(r, t)

∂t
= 0

∇ · [ε(r)E(r, t)] = 0 ∇×H(r, t)− ε0ε(r)
∂E(r, t)
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= 0

Because Maxwell’s equations are linear, we can restrict our analysis to harmonic modes

H(r, t) = H(r)e−iωt E(r, t) = E(r)e−iωt
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Computing photonic band gaps

Propagation of electromagnetic waves, including light, is goverend by Maxwell’s equations:

∇ ·H(r, t) = 0 ∇×E(r, t) + µ0
∂H(r, t)

∂t
= 0

∇ · [ε(r)E(r, t)] = 0 ∇×H(r, t)− ε0ε(r)
∂E(r, t)

∂t
= 0

Because Maxwell’s equations are linear, we can restrict our analysis to harmonic modes

H(r, t) = H(r)e−iωt E(r, t) = E(r)e−iωt

Thus, we obtain the master equation:

∇×
�

1

ε(r)
∇×H(r)

�
=

�ω
c

�2
H(r)

where c := 1/
√
ε0µ0 is the vacuum speed of light.
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Layered medium: periodic in one direction
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Layered medium: periodic in one direction

Master equation:
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Floquet mode:

H(r) = eikruk(r)

where uk(r) is a periodic function
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Source: Joannopoulos et al. 2008
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Photonic crystals: 3D network-like structures
Propagation of light prohibited for a range of frequencies in all directions

Klatt, Steinhardt, Torquato. PNAS 116, 2019

Photonic band structure
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Propagation of light/infrared rad./THz prohibited for a range of frequencies in all directions
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Photonic crystals: 3D network-like structures
Propagation of light/infrared rad./THz prohibited for a range of frequencies in all directions

Klatt, Steinhardt, Torquato. PNAS 116, 2019

Photonic band structure
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“Photonics + Foam = Phoamtonics”
First complete photonic band gap of foam-based heterostructure

Klatt, Steinhardt, Torquato. PNAS 116, 2019
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Photonic band gaps of optimized networks

1. What are photonic band gaps? . 1. Klatt, Steinhardt, Torquato PNAS
116:23480, 2019

2. Foam + Photonics = Phoamtonics .
1. Klatt, Steinhardt, Torquato PNAS 116:23480, 2019

3. Universal gap sensitivity of optimized networks .
1. Klatt, Steinhardt, Torquato PRL 127:037401, 2021

4. Open problem: band folding . 1. Klatt,
Steinhardt, Torquato PNAS 127:037401, 2021

13



What is a foam?

Source: Michael Boran
from Weaire, Cox, Brakke, 2005

Physics:

• Dispersion of a gaseous phase in a liquid or solid phase

• Liquid fraction:
volume of liquid per unit of foam volume
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What is a foam?

Source: Michael Boran
from Weaire, Cox, Brakke, 2005

Physics:

• Dispersion of a gaseous phase in a liquid or solid phase

• Liquid fraction:
volume of liquid per unit of foam volume

• Dry foam: vanishing liquid fraction

Mathematics:

• Dry foams locally minimize the surface area of their
cells subject to volume constraints.

• Plateau’s laws (1873):

1. Each film has constant mean curvature
2. Three films meet at 120◦

3. Four edges meet at tetrahedral vertices
arccos(−1/3) ≈ 109◦

• Mathematical proof by Taylor (1976)
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Kelvin Problem (1887)
What tessellation with cells of equal volume has the least surface area?
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Kelvin Problem (1887)
What tessellation with cells of equal volume has the least surface area?

Kelvin foam

Conjecture: Relaxation of Voronoi cells of
body-centered cubic (bcc) lattice

Thomson. Phil. Mag. 1887
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Kelvin Problem (1887)
What tessellation with cells of equal volume has the least surface area?

Kelvin foam Weaire-Phelan foam

Conjecture: Relaxation of Voronoi cells of
body-centered cubic (bcc) lattice

Surface area is 0.3% smaller for
Weaire-Phelan than Kelvin foam

Thomson. Phil. Mag. 1887; Weaire, Phelan. Phil. Mag. Lett. 1994
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Kelvin Problem (1887)
What tessellation with cells of equal volume has the least surface area?

Kelvin foam Weaire-Phelan foam

Conjecture: Relaxation of Voronoi cells of
body-centered cubic (bcc) lattice

Surface area is 0.3% smaller for
Weaire-Phelan than Kelvin foam

Thomson. Phil. Mag. 1887; Weaire, Phelan. Phil. Mag. Lett. 1994; Kusner, Sullivan. The Kelvin Problem 1996

15



“Photonics + Foam = Phoamtonics”
Complete photonic band gap of foam-based heterostructure

Klatt, Steinhardt, Torquato. PNAS 116, 2019

Edges of Weaire-Phelan foam
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“Photonics + Foam = Phoamtonics”
Complete photonic band gap of foam-based heterostructure

Klatt, Steinhardt, Torquato. PNAS 116, 2019

Edges of Weaire-Phelan foam

Plateau’s laws for dry foam
(with vanishing liquid fraction)
guarantee exclusively tetrahedral vertices

109o

Four edges meet at
arccos(−1/3) ≈ 109◦

Tetrahedral vertices empirically known to
be advantageous for photonic band gaps
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Gap size varies with volume fraction and dielectric contrast
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“Photonics + Foam = Phoamtonics”
Complete photonic band gap of foam-based heterostructure

Klatt, Steinhardt, Torquato. PNAS 116, 2019

Utility of foams for applications

• Multifunctionality

• Self-organization

• High degree of isotropy
among crystal structures
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“Photonics + Foam = Phoamtonics”
Complete photonic band gap of foam-based heterostructure

Klatt, Steinhardt, Torquato. PNAS 116, 2019

Utility of foams for applications

• Multifunctionality

• Self-organization

• High degree of isotropy
among crystal structures

Applications at visible wavelengths are
challenging with current technology

Standard techniques of solid open-cell
foams for cell sizes in sub-millimeter
regime ⇒ THz radiation
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Photonic band gaps of optimized networks

1. What are photonic band gaps? . 1. Klatt, Steinhardt, Torquato PNAS
116:23480, 2019

2. Foam + Photonics = Phoamtonics .
1. Klatt, Steinhardt, Torquato PNAS 116:23480, 2019

3. Universal gap sensitivity of optimized networks .
1. Klatt, Steinhardt, Torquato PRL 127:037401, 2021

4. Open problem: band folding . 1. Klatt,
Steinhardt, Torquato PNAS 127:037401, 2021
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Networks with a variety of topologies and symmetries
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Networks with a variety of topologies and symmetries
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Networks with a variety of topologies and symmetries
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Photonic band gaps of optimized networks
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Conclusion

Hyperuniformity Phoamtonics Universal gap sensitivity

Isotropic like liquids,
homogeneous like crystals

Turning foams into
photonic networks to
“mold the flow of light”

For optimized gap size of
crystal and disordered
networks
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Back up
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Stable matching of point patterns

• Start with hyperuniform lattice Zd and
non-hyperuniform point process with,
on average, more than one point per unit area,

for example, complete spatial randomness

Klatt, Last, Yogeshwaran. Random Struct. Algor. 57, 2020
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• Start with hyperuniform lattice Zd and
non-hyperuniform point process with,
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Stable matching of point patterns

• Start with hyperuniform lattice Zd and
non-hyperuniform point process with,
on average, more than one point per unit area,

for example, complete spatial randomness

• Iteratively match points that are
mutual nearest neighbors

• Unique stable matching
(in sense of Gale and Shapely, 1962)

Theorem [Klatt, Last, Yogeshwaran 2020]
New process of matched (green) points
is hyperuniform

Klatt, Last, Yogeshwaran. Random Struct. Algor. 57, 2020
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Systematic characterization of density fluctuations

Number distribution: higher-order moments
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