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Benchmarks in Machine Learning

kNN classifier

SVM classifier

CNN classifier

Accuracy for MNIST (Delahunt et al 2019)

Bayes-optimal benchmark
(Andrew Ng’s Blog, Dec. 22, 2018)
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Early results relevant to benchmark learning

• k-NN useful for learning upper and lower bounds on Bayes probability of error

Theorem (Cover and Hart (1967))

Let ε̂kNNn be the empirical error rate of the k-NN binary classifier applied to a
training set {Xi ,Yi}ni=1 drawn i.i.d. from distribution f (X ,Y ). Then, as
n→∞,

1

2

(
1−

√
1− 2ε̂kNN

n

)
≤ ε∗ ≤ ε̂kNNn , (a.s)

where ε∗ is Bayes error probability.

• If family F of distributions completely unconstrained, there will exist
f (X ,Y ) ∈ F for which Bayes probability of error is not learnable.

Theorem (Thm. 8.5 Devroye, Györfi, Lugosi (1996) )

For every n, for any estimate ε̂n of the Bayes error probability ε∗ and for every
δ > 0, there exists a distribution of (X ,Y ) such that

E {|ε̂n − ε∗|} ≥
1

4
− δ.
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Learning to bound Bayes error: MST

Figure: Friedman-Rafsky statistic converges to bound on Bayes classification error.

Friedman-Rafky (FR) statistic1 = #dichotomous edges btwn M + N features

• If class distributions are continuous, FR/(M + N) approximates an information
divergence measure2.

• This measure specifies upper and lower bounds on Bayes error3

1 J. Friedman and L. Rafsky (1979), Multivariate generalizations of the Wald-Wolfowitz and
Smirnov two-sample tests. The Annals of Statistics.

2 N. Henze and M. D. Penrose (1999). On the multivariate runs test. Annals of Statsistics.
3 V. Berisha, A. Wisler, A.O. Hero, and A. Spanias (2016), “Empirically Estimable Classifica-

tion Bounds Based on a Nonparametric Divergence Measure” IEEE Transactions on Signal
Processing.

6



Benchmarks in ML Learning divergence Learning ensembles Applications Summary

Learning to bound Bayes error: MST

Figure: Friedman-Rafsky statistic converges to bound on Bayes classification error.

Friedman-Rafky (FR) statistic1 = #dichotomous edges btwn M + N features
• If class distributions are continuous, FR/(M + N) approximates an information

divergence measure2.

• This measure specifies upper and lower bounds on Bayes error3

1 J. Friedman and L. Rafsky (1979), Multivariate generalizations of the Wald-Wolfowitz and
Smirnov two-sample tests. The Annals of Statistics.

2 N. Henze and M. D. Penrose (1999). On the multivariate runs test. Annals of Statsistics.
3 V. Berisha, A. Wisler, A.O. Hero, and A. Spanias (2016), “Empirically Estimable Classifica-

tion Bounds Based on a Nonparametric Divergence Measure” IEEE Transactions on Signal
Processing.

6



Benchmarks in ML Learning divergence Learning ensembles Applications Summary

Learning to bound Bayes error: MST

Figure: Friedman-Rafsky statistic converges to bound on Bayes classification error.

Friedman-Rafky (FR) statistic1 = #dichotomous edges btwn M + N features
• If class distributions are continuous, FR/(M + N) approximates an information

divergence measure2.

• This measure specifies upper and lower bounds on Bayes error3

1 J. Friedman and L. Rafsky (1979), Multivariate generalizations of the Wald-Wolfowitz and
Smirnov two-sample tests. The Annals of Statistics.

2 N. Henze and M. D. Penrose (1999). On the multivariate runs test. Annals of Statsistics.
3 V. Berisha, A. Wisler, A.O. Hero, and A. Spanias (2016), “Empirically Estimable Classifica-

tion Bounds Based on a Nonparametric Divergence Measure” IEEE Transactions on Signal
Processing.

6



Benchmarks in ML Learning divergence Learning ensembles Applications Summary

Benchmarking performance of Bayes classifier

Consider classification problem

• Y ∈ {0, 1} an unknown label with priors {q, p}, p + q = 1.

P(Y = k) = pkq1−k , k = 0, 1

• X an observed random variable with conditional distribution

f (x |Y = k) = [f1(x)]k [f0(x)]1−k , k = 0, 1

Figure: Density and realizations over two dimensional feature space.
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Bayes error rate: best achievable misclassification error probability

Bayes error rate εp is avg missclassification error probability of Bayes classifier

εp(f0, f1) = P(C(X ) 6= Y ), C(x) = argmaxk∈{0,1}{P(Y = k|X = x)}

Bayes error has integral representation1

εp(f0, f1) =
1

2
− 1

2

∫
|qf0(x)− pf1(x)|dx ,

Alternative representation as an f -divergence btwn distributions

εp(f0, f1) =
1 + |p − q|

2
− 1

2

∫
g(f1(x)/f0(x))f0(x)dx ,

where g(u) is the convex non-smooth function

g(u) = |pu − q| − |p − q|.

1 Sec. 2.4, Devroye, Görfi, Lugosi, A Probabilistic Theory of Pattern Recognition 1996
8
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The f -divergence between a pair of distributions

The f-divergence (Csiszár)1, (Ali-Silvey)2:

Dg (f1‖f0) =

∫
g

(
f1(x)

f0(x)

)
f0(x)dx

where g(u) is a convex function on IR+ and g(1) = 0.

Properties of f -divergence: if g is strictly convex then Dg (f1‖f0) is

• non-negative reflexive : Dg (f1‖f0) ≥ 0 with equality iff f1 = f0

• monotone: Dg (f1‖f0) non-increasing under transformations x → T (x)

• jointly convex: Dg (f1‖f0) is convex in (f0, f1)

Examples: g(u) = ulog(u) (KL); g(u) = (1− uα) 1
1−α (Rényi-α).

1 I. Csiszár (1963), Eine informationstheoretische Ungleichung und ihre Anwendung auf den Be-
weis der Ergodizitat von Markoffschen Ketten. Magyar. Tud. Akad. Mat. Kutato Int. Kozl.
8:85–108.

2 S. M. Ali and S. D. Silvey (1966), A general class of coefficients of divergence of one distribution
from another, J. Royal Stat. Soc., Ser.B , 28:131-142.
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Instances of f -divergences1

• Total variation distance g(u) = 1
2
|u − 1|

DTV (f1‖f0) =
1

2

∫
|f1(x)− f0(x)|dx

• α-divergence: g(u) = (1− uα) 1
1−α

DR(f1‖f0) =

(
1−

∫
f α1 (x)f 1−α

0 (x)dx

)
1

1− α

• Kullback-Liebler divergence: g(u) = ulogu:

DKL(f1‖f0) =

∫
f1(x)log

(
f1(x)

f0(x)

)
dx

• Hellinger-Bhattacharyya divergence g(u) = (
√
u − 1)2

DH(f1‖f0) =

∫ (√
f1(x)−

√
f0(x)

)2

dx

1 Csiszár, I., and Shields, P. C. (2004). Information theory and statistics: A tutorial. Foundations
and Trends in Communications and Information Theory, 1(4), 417-528.
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Other instances of f -divergences

• Generalized total variation distance1: g(u) = |pu − q|/2− |p − q|/2

DGTV
p =

1

2

∫
|pf1(x)− qf0(x)|dx + |p − q|/2

• Henze-Penrose divergence2: g(u) = 1
4pq

[
(pt−q)2

pt+q
− (p − q)2

]
DHP

p =
1

4pq

[∫
(pf1(x)− qf0(x))2

pf1(x) + qf0(x)
dx − (p − q)2

]
.

1 T. Kailath (1967), The divergence and Bhattacharyya distance measures in signal selection,
IEEE T. Communication Technology, 15:1:52–60

2 N. Henze and M. D. Penrose (1999). On the multivariate runs test. Annals of Stats, 290-298.
11
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f -divergences and Bayes error rate

These divergences can each be related to minimum probability of error

• Exact f -divergence representation

εp(f1, f0) =
1 + |p − q|

2
− DGTV

p (f1(x)‖f0(x))

• Bhattacharyya bound1

1
2
− 1

2

√
1− (BCp)2 ≤ εp ≤ 1

2
BCp,

where BCp =
√

pq

2
(1− DH

p ) is the Bhattacharyya coefficient BC.

• Learning to benchmark can be reduced to f -divergence estimation.

1 T. Kailath (1967), The divergence and Bhattacharyya distance measures in signal selection,
IEEE T. Communication Technology, 15:1:52–60
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Extension: learning mutual information

The Mutual Information is also an f -divergence

MI (X1;X2) =

∫
g

(
f (X1,X2)

f (X1)f (X2)

)
f (X1)f (X2)

where Shannon MI is obtained for the case that

g(u) = ulog(u)

Such divergences can be learned from training data1 {(X1(k),X2(k))}nk=1

1 K. Moon, K. Sricharan, A. Hero, “Ensemble Estimation of Generalized Mutual Information with
Applications to Genomics,” IEEE Transactions on Information Theory, to appear 2021.

13
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Extension: multiclass classifier benchmarking

Bayes error for Multiclass classification has representation (K classes)

εp(f1, . . . , fK ) = 1− p1 −
K∑

k=2

∫
gk

(
f1(x)

fk(x)
, . . . ,

fk−1(x)

fk(x)

)
fk(x)dx

where

gk(u1, . . . , uk−1) = max

(
0, pk − max

1≤i≤k−1
{piui}

)
This representation can be used for learning Bayes error1

Simpler multiclass divergences can also be learned to bound Bayes error2

1 M. Noshad, L. Xu, and A. Hero, “Learning to Benchmark: Estimating Best Achievable Mis-
classification Error from Training Data,” arXiv:1909.07192, Sept. 2019.

2 S. Sekeh, B. Oselio and A. Hero, “Learning to Bound the Multi-class Bayes Error,” IEEE Trans.
on Signal Processing, vol. 68, pp. 3793 – 3807, May 2020.

14
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Learning f -Divergence

• Goal: Accurate and computationally fast estimation of f -divergence

• Assumption: Strictly bounded and continuous class distributions f1, f0.

• Density plug-in estimator of f -divergence:

D̂g (f1‖f0) =

∫
g

(
f̂1(x)

f̂0(x)

)
f̂0(x)dx

where
• f̂0, f̂1 are density estimates, e.g., with kernel bandwidth parameter ε
• Gabor kernel, histogram, k-NN kernel1 (Devroye 2012)

• Root mean squared error (RMSE) decreases slowly in n=#samples

RMSE =
√

Bias2 + Variance = cn−1/2d

⇒ Compare to optimal parametric RMSE rate:

RMSE =
√
MSE = cn−1/2

1 L. Devroye, G. Lugosi, ”Combinatorial methods in density estimation,” Springer 2012.
15
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Learning to benchmark via ensemble learning: preview

• We combine an ensemble of base plug-in estimators of f -divergence
• The ensemble weights are derived under a smoothness assumption:

The class densities f0, f1 are d-times continuously differentiable.

• Resulting ensemble estimator achieves parametric rates of convergence

• K.R. Moon, K. Sricharan, K. Greenewald, and A.O. Hero, ”Ensemble Estimation of Information Divergence,” Entropy 2018

• M. Noshad, L. Xu and A. Hero, “Learning to Benchmark: Estimating Best Achievable Misclassification Error from Training Data,”

arXiv:1909.07192 Sept. 2019 16
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Ensemble learners

• {Eli }
L
i=1 ensemble of base estimators (weak learners)

• w0 = (w0(l))Ll=1 a vector of boosting weights

• Ew0 : combined base estimators (boosted learner)

17
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Ensemble learners

Most ensemble learning approaches use data-dependent weights:

• Boosting classifiers with Adaboost1 and other objective functions.

Under some conditions such methods achieve Bayes optimal performance2

Alternative: we solve an offline inverse problem for rate-optimal weights3

This can be applied to different base divergence estimators:

• Kernel density estimates (KDE)

• k-NN density estimates

• NN ratio estimates

• Locality sensitive hashing (LSH) density estimates

1 Y. Freund and R. E. Schapire (1996). Experiments with a new boosting algorithm. Intl Conf
on Machine Learning. pp. 148-156.

2 Bickel, P. J., Ritov, Y. A., and Zakai, A. (2006). Some theory for generalized boosting algo-
rithms. J. of Machine Learning Research, 705-732.

3 Moon, Sricharan, Greenewald, Hero. ”Ensemble estimation of information divergence.” Entropy
20, no. 8 (2018): 560.

18
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1 Y. Freund and R. E. Schapire (1996). Experiments with a new boosting algorithm. Intl Conf
on Machine Learning. pp. 148-156.

2 Bickel, P. J., Ritov, Y. A., and Zakai, A. (2006). Some theory for generalized boosting algo-
rithms. J. of Machine Learning Research, 705-732.

3 Moon, Sricharan, Greenewald, Hero. ”Ensemble estimation of information divergence.” Entropy
20, no. 8 (2018): 560.
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Locality sensitive hashing (LSH) plug-in estimator

D̂g (f1‖f0) :=
∑

i :Mi>0

g

(
Ni/N

Mi/M

)
Mi/M

Figure: LSH quantizes X data with cell resolution ε and random displacement b
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Locality sensitive hashing plug-in estimator: bias and variance

Theorem (Bias Expansion)

If f0 and f1 are d-times differentiable, the mean of D̂g has representation

E[D̂g ] = D(f1‖f0) + B(D̂g )

B(D̂g ) =
d∑

i=1

Ciε
i + O

(
1

nεd

)
.

Theorem (Variance)

The variance of the hash-based estimator decreases at least as fast as 1/n

V(D̂g ) ≤ O

(
1

n

)
.

⇒ Choosing ε = O
(
n−1/2d

)
forces bias remainder to O

(
1

nεd

)
= O(1/

√
n)

⇒ This makes the slowest term in the bias decay as B(D̂g ) = O(n−1/2d)
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Ensemble learning to reduce bias solves an inverse problem

• Let {D̂ε(t)
g }t∈L be a set of L = |L| base learners.

• ε(t) = tn−1/2d is a set of bandwidth parameters.

• L := {t1, ..., tL} is a set of scale factors.

Define: Ensemble divergence estimator L ≥ d : D̂w :=
∑L

j=1 wj D̂ε(tj ) = wT D̂ε

Bias of ensemble divergence estimator:

B
[
D̂w

]
=

d∑
i=1

Cin
−i/2d

L∑
j=1

wj t
i
j + O

(
1√
n

)

Bias reduced to O
(

1√
n

)
if {wj}Lj=1 selected to solve linear system Aw = 0:


t1 . . . . . . tL

t2
1

. . .
. . . t2

L

...
. . .

. . .
...

td1 . . . . . . tdL




w1

...

...
wL

 =


0
...
...
0


⇒ For large d , Chebychev methods used to stabilize solution (Noshad ’19)
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Controlling ensemble estimator variance

Variance of ensemble divergence estimator is quadratic in w

V(D̂w) = V(wT D̂ε) = wT cov(D̂ε)w ≤ ‖w‖2λmax .

⇒ Select w as solution to linearly constrained quadratic program

min
w

‖w‖2, [OPT1]

subject to
L∑

j=1

wj = 1,

L∑
j=1

wj t
i
j = 0, i ∈ [d ]

• If L > d , the solution w∗ to [OPT1] ensures MSE of O(1/n).

• Weights are computed offline, not dependent on data or data’s distribution

• For large d , {tj} can be selected as Chebyshev nodes
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Solution of [OPT1]

In matrix form the constraints in [OPT1] are Aw = b and min-norm solution is

w∗ = (ATA)†ATb

Q. How to select ti ’s in order to simplify the solution w∗?
A. Cast [OPT1] as a min-norm polynomial approximation problem

min
w

‖w‖2, [OPT1]

subject to
L∑

j=1

wjpi (tj) = pi (0), i ∈ [d ]

where, for α > max{ti}, pi : [0, α]→ R are degree d polynomials with
coefficients βi = [βi,d , . . . , βi,0]:

pi (t) = βi,d t
d + . . .+ βi,1t + βi,0, i = 1, . . . , d + 1

23
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Solution of [OPT1]

Shifted Chebyshev polynomials (SCP) Tα
n : [0, α]→ R,

Tα
n (t) = Tn(2t/α− 1), n = 0, 1, . . . ,

where Tn : [−1, 1]→ R is a Chebyshev polynomial of the first kind of degree n.

• The roots {si}ni=1 of Tα
n have the form

sk =
α

2
cos

((
k +

1

2

)
π

L

)
• If {si}ni=1 are roots of Tα

n , a discrete orthogonality property holds

n−1∑
i=0

Tα
l (si )T

α
m (si ) = 0, l 6= m, l ,m < n

Theorem (Chebyshev solution)

When the parameters {ti}Li=1 are selected as the roots {si}Li=1, of Tα
L (t), then

the solution of [OPT1] is

w∗i =
2

L

d∑
k=0

Tα
k (0)Tα

k (si )−
1

L
, i = 1, . . . , L,
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Chebyshev stabilization of ensemble wieghts (L = 10)

Figure: For L = 10 the arithmetic nodes (bandwidth scaled by k, k + 1, . . .) give
weights with higher dynamic range than the proposed Chebyshev node approach.1

1 M. Noshad, L. Xu and A. Hero, “Learning to Benchmark: Estimating Best Achievable Misclas-
sification Error from Training Data,” arXiv:1909.07192, Sept. 2019.
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Chebyshev stabilization of ensemble wieghts (L = 100)

Figure: For L = 100 the arithmetic nodes (bandwidth scaled by k, k + 1, . . .) give
weights with much higher dynamic range than the proposed Chebyshev node approach.
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Chebyshev wieghts improve MSE of benchmark learner

Figure: For a binary classification problem (mean of Gaussian isotropic dsn in dim
d = 100) the proposed Chebyshev node approach provides significant improvement of
MSE in Bayes estimation error rate.
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Benchmark learner as a minibatch stopping rule

Simulation: classification of 2 mean shifted 10 dim Gaussian densities

Ref: Noshad and Hero, AISTAT 2018
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Benchmark learner for assessing multiclass classification

Simulation: K = 4 classes in concentric sphere regions over d = 20 dimensions

Figure: Benchmark learner suggests small margin for improvement. DNN: 5 hidden
layers with [20,64,65,10,40] RELU neurons trained with ADAM and 10% dropout.
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Benchmarking MNIST digit classification

MNIST handwritten digit corpus:

• K = 10 classes

• d = 784 dimensions

• n = 60, 000 samples
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Mutual information estimation: application to DNN information bottleneck

Convolutional neural network (CNN) for image classification1

• DNNs have remarkable empirical performance,

but there is limited
understanding of why DNN perform so well

The compositional learning hypothesis: (A. Yuille, CVPR 2010)
DNN’s learn in two phases:

• Phase 1: learn the easy cases (memorize)

• Phase 2: generalize to the hard cases (compress)

1B. DuFumier. A new deep learning approach to solar flare prediction. ENSTA internship report, Sept. 2018
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Tishby’s framework: encoder/decoder information bottleneck

• Encoder I/O: input X , ouptut T (features)
• Decoder I/O: input T , output Y (labels)

1R Schwartz-Ziv and N Tishby. ”Opening the black box of deep neural networks via information.” arXiv 2017

2AM Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, BD Tracey, DD. Cox, ”On the information bottleneck theory of deep

learning,” ICLR 2018
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Information plane: a layer-by-layer plot of discrimination vs. compression

Compression ←→ Memorization

• Plot of training-trajectories of [I (X ;Ti ), I (Ti ;Y )] for different layers Ti

I (X ;T ) =

∫
fXT log

(
fXT
fX fT

)
, I (T ;Y ) =

∫
fTY log

(
fTY
fT fY

)

• Schwartz-Ziv&Tishby1 observed memorization→compression for tanh
activation (MLP 10-8-6-4-2 and classification of 10D Gaussian)

1R Schwartz-Ziv and N Tishby. Opening the black box of deep neural networks via information. arXiv 2017
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Does memorization→compression depend on activation function?

Figure: Figure 1.C (tanh) and 1.D (ReLU) from Saxe et al1

• 784-1024-20-20-20-10 MLP trained on MNIST dataset

• Output layer: sigmoid. Hidden layers: tanh at left and ReLu at right.

• Trained using SGD on cross–entropy loss with minibatch size 128

• Learning rate= 0.001

• Saxe et al claim that ReLU inner layers exhibit no compression

1 Saxe, Bansal, Dapello, Advani, Kolchinsky, Tracey, and Cox, ”On the information bottleneck
theory of deep learning,” ICLR, 2018.
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Information plane for MLP/ReLU using ensemble MI estimation

• 10-8-6-4-2 MLP/ReLU trained on 10,000 samples of 10D Gaussian

• MI with L = 1 (green&blue) is the Schwartz-Ziv&Tishby MI estimate

• Proposed ensemble MI implementation1 (red&orange) is more stable

1 Noshad, Yu, Hero, ”Scalable MI estimation using dependence graphs,” ICASSP 2019.
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Ensemble estimation provides confirmatory evidence

Figure: Left: MLP/ReLU 784-1024-20-20-20-10. Right: CNN/ReLU 784-4-8-16-10

• MLP and CNN trained on MNIST dataset1

⇒ Memorization→Compression phenonomon occurs in both MLP and CNN

1 Noshad, Yu, Hero, ”Scalable MI estimation using dependence graphs,” ICASSP 2019.
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Summary

Main takeaways
• Learning to benchmark involves 2 types of meta-learning

• Meta-learning v0: Learning ensembles of weak base-learners
(Freund&Schapire 1996)

• Meta-learning v1: Learning the Bayes error rate (BER)123

• Ensemble benchmark learner achieves rate optimal performance in both
computational complexity and sample complexity

• Benchmark learning applications:
• Performance monitoring: learning sufficient sample size
• Feature learning: performing data-driven feature selection
• Interpretable learning: exploring DNN compositional learning hypothesis

1 Moon, Sricharan, Greenewald, Hero. ”Ensemble estimation of information divergence.” En-
tropy, 20, no. 8, 2018.

2 Noshad and Hero, ”Scalable hash-based estimation of divergence measures,” AISTATS 2018.
3 Noshad, Zeng, Hero, ”Scalable mutual information estimation using dependence graphs,” IEEE

ICASSP, 2019
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2 S. Sekeh, B. Oselio and A. Hero, “Learning to Bound the Multi-class
Bayes Error,” IEEE Trans. on Signal Processing, vol. 68, pp. 3793 – 3807,
May 2020.

3 M. Noshad, L. Xu and A. Hero, “Learning to Benchmark: Estimating Best
Achievable Misclassification Error from Training Data,” arXiv:1909.07192,
Sept. 2019.

4 Moon, Sricharan, Greenewald, Hero. ”Ensemble estimation of information
divergence.” Entropy, 20, no. 8, 2018.

5 Python script implementing the method of [3] is available on Google

colaboratory:

BayesErrorEstimator.jpynb
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