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Historical perspective

Traditionally, a rigorous first course in Analysis progresses (more or less) in the
following order:

eis limits,
.= continuous = derivatives = integration.
mAapPINgs functions

On the other hand, the historical development ol these subjects occurred in reverse
order:

Archimedes
Kepler 1615
Fermat 1638

Cantor 1875 Cauchy 1821  Newton 1665
Dedekind " Weierstrass  Leibniz 1675
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Cybernetics

-/‘, ¢ m )
“Cybernétique” was proposed by the French physiciSfLMA.—. Ampeére in the XIX Century to
design the nonexistent science of process controlling. This was quickly forgotten until 1948, when
Norbert Wiener (1894-1964) chose “Cybernetics” as the title of his famous book.

Wiener defined Cybernetics as “ the science of control and communication in animals and
machines” .}

In this way, he established the connection between Control Theory and Physiology and
anticipated that, in a desirable future, engines would obey and imitate human beings.

Bol. Soc. Esp. Mat. Apl. n”26(2003), 79-140

Control theory: History, mathematical achieverments and
perspectives”

[5. FERNANDEZ-CARA! AND I£. ZUAZUA?

L “What we want is a machine that can learn from experience.” Alan Turing, 1947.
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Control

Robotic arm
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Control

Controllability

x'(t) = Ax(t) + Bu(t), te€ (0,T); x(0)=x". (1)

In (1), Ais a n x n real matrix, B is of dimensions n x m and x° is the initial sate of the sytem in
R". The function x : [0, T]| — R" represents the state and u : [0, T] — R™ the control.

i Can we control the state x of n components with only m controls, even if n >> m so that, for
instance x(T) = 07

(1958, Rudolf Emil Kalman (1930 — 2016 )) System (1) is controllable iff

rank[B, AB,--- ,A""1B] = n.

Input mmmmp | Controller | mm—p c‘;:':czlslid mmmd Output

Open Loop System
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Back and forth but not at the same place!

y(2¢)

(u1,u2) = (0,72)

%6(453 Oﬁ;;z + mmee®[f1, fo(a

(u1,u2) = (m,0)
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Sketch of the proof

From the variation of constants formula:

t t ¢ k
x(t) = X —I—/ e =) By(s)ds = eAtXO—I—/ Z (t—s) AXBu(s)ds.
L 0 S0 K

By Cayley?-Hamilton’s 3 theorem AX, for k > n, is a linear combination of I, A, ..., A"~ 1.

The Kalman rank condition assures that, manipulating the last term due to the variation of
constants formula, out of a strategic choice of the control u(t), the solution can be driven to any

destination x(T).

2 Arthur Cayley (UK, 1821 - 1895)
3William Rowan Hamilton (Ireland, 1805 - 1865)
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An example: Nelson's car.

4

,

Two controls suffice to control a four-dimensional dynamical system.

I1

>

E. Sontag, Mathematical control theory, 2nd ed., Texts in Applied Mathematics,vol.6,
Springer-Verlag, NewYork,1998.
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Duality, J.-L. Lions, SIREV, 1988

Consider the adjoint system
{ —p' =A*p, t€(0,T)

p(T) = pr
and minimize .
1 >k
Apr) =3 [ 1B det (<, p(0)
0

Then

is the control of minimal L?-norm.?

And the functional J is coercive iff the Kalman rank condition is satisfied.

The Kalman condition is equivalent to the Unique Continuation property

B*p=0=p' =0.

Which can be recast in terms of the spectrum of A*: For all eigenvector e such that A*e = Ae,
then B*e #£ 0.

Similar to the Shizuta-Kawashima condition for partially hyperbolic systems and related to
hypoellipticity and hypocoercivity.

4This confirms Wiener's vision " ..control and communication...”
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Unique continuation
—

Observability inequality

=

Control

With a constructive methodology to build controls of minimal norm, minimizing a quadratic
functional with various advantages:

@ Suitable variants allow to build bang-bang or sparse controls.
@ This leads to numerical algorithms,

@ It can be adapted to the infinite-dimensional setting (PDE).
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Outline

© Deep learning
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Universal approximation theorem |

Math. C | Signals § 989) 2; 303-314 : "
R gasts Sistens (5 Mathematics of Control,

Signals, and Systems

© 1980 Springer-Verlag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

i a,o(y]x + ), A/ (1)
=]

where y; € R"and «;, # € R are fixed. (y' is the transpose of y so that y"x is the inner
product of y and x.} Here the univariate function ¢ depends heavily on the context
of the application. Our major concern is with so-called sigmoidal ¢’s:

a(t)—b{l as b= +oo, A/

0 as [ - —D.
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Deep learning

Universal approximation theorem ||
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Deep learning

Supervised learning

Goal: Find an approximation of a function f, : RY — R™ from a dataset
- 1N
{Xi’yi}izl - RdXN < Rme
drawn from an unknown probability measure p on RY x R™.

Classification: match points (images) to respective labels (cat, dog).
— Popular method: training a neural network.

‘@
V1

l&

PLASTIC
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Deep learning

Residual neural networks

[1] K He, X Zhang, S Ren, J Sun, 2016: Deep residual learning for image recognition

[2] E. Weinan, 2017. A proposal on machine learning via dynamical systems.

[3] R. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, 2018. Neural ordinary differential equations.

[4] E. Sontag, H. Sussmann, 1997, Complete controllability of continuous-time recurrent neural networks.

ResNets

Xt = XX+ hWX o (ARXE +b%), ke {0,..., Njayers — 1}
XX =%, i=1.,N

where h = 1, o globally Lipschitz o(0) = 0.

nODE
Layer = timestep; h = N,T for given T > 0
ayers
xi(t) = W(t)o(A(t)x;(t) + b(t)) for t € (0, T)

X,'(O) — )_(’,', | = 1, ooy N

The problem becomes then a giant simultaneous control problem in which each initial datum x;(0)

needs to the driven to the corresponding destination for all i = 1, ..., N with the same controls:

@ What happens when T — oo, i.e. in the deep, high number of layers regime?® ©
5

C. Esteve, B. Geshkovski, D. Pighin, E. Zuazua, Large-time asymptotics in deep learning, arXiv:2008.02491
5D. Ruiz-Balet & Zuazua, Neural ODE control for classification, approximation and transport, arXiv:2104.05278
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Special features of the control of ResNets

@ Nonlinearities are unusual in Mechanics: o is flat in half of the phase space.

@ We need to control many trajectories (one per item to be classified) with the same control! ’

The very nature of the activation function ¢ allows actually to achieve this monster simultaneous
control goal. The fact that o leaves half of the phase space invariant while deforming the other
one, allows to build dynamics that are not encountered in the classical ODE systems in mechanics
and for which such kind of simultaneous control property is unlikely or even impossible.

"This would be impossible for instance, for the standard linear system x' = Ax + Bu.
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Turnpike for ResNets

T — oo ~ N|ayers — 0.

Turnpike refers to the fact that, in long time-horizons, optimal controls and trajectories are

exponentially close to the optimal steady-state control and state in most of the time-horizon.

Supervised Learning®* <= minimize®

1 7 .
5 | 1Px(e) = 7IPde + e (SL¥)

vy = [V1,...,¥n], u:=[A, W, b]in (16) and P : RY — R™.

Theorem (Turnpike): Under controllability assumptions, for any sufficiently large T,
an optimal solution (ur,x7) to (SL*)—(16) satisfies

HUT”Hl(O,T;Rdu) S C].

and
|1Px7(t) —y|| < Ge ¥ vVt € [0, T]

for some C; > 0, Co > 0 and i > 0, all independent of T.

8Note that in this context we do not impose a perfect classification. We just expect that it will occur with high probability as
an outcome of the optimar control problem
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Deep learning

I' =00 ~  Njyers — 00.
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Deep learning

Classical SL problem?

P:RI 5 RM™ minimize
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Deep learning
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Deep learning
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Deep learning

L1
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What is actually the ResNet doing?

The classification problem is a relaxed version of the simultaneous control problem. We are given
N points in RY and M classes y; € {1,..., M}.

We then proceed as follows:

O We identify a region in the euclidean space corresponding to each class of data.

@ Look for a control strategy (A, W, b) bringing simultaneously all points to the location

corresponding to its class.

A .
() _axis
A

[

3 0
.”I,'(l)—aXIS
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Deep learning

Basic control actions

x(t) = W(t)a(A(t)x(t) + b(t)).

@ b(t) induces a time-dependent translation of the Euclidean space. It plays an important role
to place the center of the action of the sigmoid.

o A(t) compresses, expands, and induces rotations in the euclidean space with different

objectives:
e Compression can help gathering data into clusters so that they might be manipulated simultaneously
@ Expansion allows to separate data of different classes to better focus the action of the control on

just one of them.
o Rotations allow to better choose the hemisphere where the action will be focused.

o W(t) determines the direction and intensity with which the flow will evolve in the active

hemisphere.
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Deep learning

Some canonical flows induced by nODE

T2 _axis [ 2(F) _axis
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Controlling one datum
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Compression after classification
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Classification by control

Theorem (Classification, Domenec Ruiz-Balet EZ, 2021)

4 et o be the RelLU.
Letd > 2, and N, M > 2.

Let {x,-}f\’:1 C RY be data to be classified into disjoint open non-empty subsets Sy, m=1,.... M
with labels m = m(i),i =1,..., N.
Then, for every T > 0, there exist control functions A, W & L*° ((O, T); RdXd) and

b e L> ((0, T),R?) such that the flow associated to the Neural ODE, when applied to all initial
data {x;} |, classifies them simulatenously, i.e.

o1(xi; A, W,b) € S,y Vi=1,.., N.

Furthermore,

@ Controls are piecewise constant with a maximal finite number of switches of the order of
O(N). They also lie in BV.

@ The control time T > 0 can be made arbitrarily small (scaling).
@ The complexity of controls diminishes when initial data are structured in clusters.

@ The complexity of controls also diminishes when the control requirement is relaxed so that
not all data need to be classified.

—’The targets S, can be just N distinct points in the euclidean space.

9Related results for smooth sigmoids using Lie bracket control techniques: A. Agrachev and A. Sarychev,
arXiv:2008.12702, (2020).

vy
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Deep learning

Neural transport equations

Note that the differential equation

% = W(t)o(A(t)x + b(t))
X(O) = X0

corresponds to the characteristics of the transport equation:

Bep + divy [(W(t)o (A(t)x + b(t)))p] = 0
p(0) = p°

The results above can therefore be understood in terms of the controllability of the transport
equation: " Atomic initial data can be driven to atomic final targets”. This also allow for a more

general interpretation in terms of approximation control in Wasserstein-1 distance. Or for systems
of transport equations, so that each scalar component corresponds to the density within one of
the classes of data.

This establishes a link to the Theory of Optimal Transport: Neural Transport? °

Wi(u,v) = sup {/ gdu—/ ng}
Lip(g)<1 L/RA R

where Lip(g) < 1 stands for the class of Lipschitz functions with Lipschitz constant less or equal than 1.
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Deep learning

The simultaneous control of the nODE

{x — W(t)o(A(t)x + b(t))
x(0)=x, i=1,..,N

to arbitrary terminal states
x(T)=y;, i=1,..,N
in terms of the transport equation, leads to the control of an atomic initial datum from

N
p(x,0) = Z m;dx;
1—1
to the terminal one
N
=1

But note that, even if the locations of the masses are transported, the amplitude of the masses
do not vary.
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Deep learning

We can enrich the strategy above to also regulate the amplitude of the masses. But this requires
to relax the control statement into an e-approximate one.
For that to be done we need to split initial masses so that

J;

they are dispersed from the center x; into the neighboring points x; ;. This allows to enrich the
transport diagram.

m
L1
9
ms
9
X3
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Deep learning

Neural transport equations

= [
/(TR T,

! Cowqo( AT
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Universal approximation

@ As a corollary we can achieve Universal Approximation.

@ By density, it is sufficient to consider targets that are simple piecewise constant functions.

@ We can proceed making a partition of the departure and arrival spaces so that the problem
becomes a countable version of simultaneous control of the nODE.

i
B

’Blh.\

@ The complexity of the needed controls depends on the nature of functions one aims to
approximate.!®

1 1 1
m . m . ;} .
%0 1 % 1 0 1
I i T
10N,—(h) being the number of hypercubes of side h needed to cover the boundary I', the box-counting dimension is
= i | ).
D h'ﬂ'o [Iog Nr(h)/ log (h )]

1 hen
_ 4Dd _ —2dD
W]l S e E—TJ, Ibllpec S € d—D ase — 0
_ 2dD
and the number of switches of A, W, b will be of the order of ¢ d—D .
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Deep leaming

Universal approximation

Let us approximate a piece-weise constant function taking two different values P and @ on the
sets represented by colors blue and red.
We aim to build a nODE so that the solution of

{sb(t) — W(t)a(A(t)p(t) + b(E))
©(0) = x,

is such that
©(T,x) =P, when x € Blue Set

and
o(T,x) = Q, when x € Red Set.

The same control inspired strategies allow to achieve the result up to an &- error.

@St

‘ ‘ P s ' Q
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Concluding remarks

An extraordinary and fertile field in the interplay between Dynamical Systems, Control, Machine Learning and applications

@ Control and dynamical systems tools allow to explain the amazing efficiency of Neural
Networks (NN) in some specific applications.

@ Long-time / Turnpike control arise naturally in Deep Learning

@ Interesting open questions:

e How to deal with Neural ODEs that switch in dimension of the Euclidean phase space.

Are there results explaining how the clustering of data (number of separating interfaces needed)
diminishes in higher dimensions?

How close is our piecewise constant control strategy from the optimal one (in the Pontryagin sense?)
How does our control strategy compare to those obtained in a purely NN setting?

How does the complexity of the controls diminish when we relax the classification criteria?

Links with Optimal Transport.

Other objectives: Unsupervised learning?

@ My sincere thanks to collaborators: A. Porretta (Roma 2), E. Trélat (Paris Sorbonne), M.
Gugat (FAU), D. Pighin (Innovalia), B. Geskhovski (UAM & Deusto), C. Esteve (UAM &
Deusto), M. Schuster (FAU), M. Lazar (Dubrovnik), V. Herndandez-Santamaria (Mx), N.
Sakamoto (Nanzan), J. Heiland (Magdeburg), H. Kouhkouh (Padova), D. Ruiz-Balet (UAM
& Deusto).
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