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Historical perspective
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Control

Cybernetics

“Cybernétique” was proposed by the French physicist A.-M. Ampère in the XIX Century to
design the nonexistent science of process controlling. This was quickly forgotten until 1948, when
Norbert Wiener (1894–1964) chose “Cybernetics” as the title of his famous book.

Wiener defined Cybernetics as “ the science of control and communication in animals and
machines”.1

In this way, he established the connection between Control Theory and Physiology and
anticipated that, in a desirable future, engines would obey and imitate human beings.

1“What we want is a machine that can learn from experience.“ Alan Turing, 1947.
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Robotic arm
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Control

Controllability

Let n,m 2 N⇤ and T > 0 and consider the following linear finite-dimensional system

x 0(t) = Ax(t) + Bu(t), t 2 (0,T ); x(0) = x0. (1)

In (1), A is a n⇥ n real matrix, B is of dimensions n⇥m and x0 is the initial sate of the sytem in
Rn. The function x : [0,T ] �! Rn represents the state and u : [0,T ] �! Rm the control.
¿Can we control the state x of n components with only m controls, even if n >> m so that, for
instance x(T ) = 0?

Theorem

(1958, Rudolf Emil Kálmán (1930 – 2016 )) System (1) is controllable i↵

rank [B, AB, · · · ,An�1B] = n.
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Back and forth but not at the same place!
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Control

Sketch of the proof

From the variation of constants formula:

x(t) = eAtx0 +

Z t

0
eA(t�s)Bu(s)ds = eAtx0+

Z t

0

X

k�0

(t � s)k

k!
AkBu(s)ds.

By Cayley2-Hamilton’s 3 theorem Ak , for k � n, is a linear combination of I ,A, ...,An�1.

The Kalman rank condition assures that, manipulating the last term due to the variation of
constants formula, out of a strategic choice of the control u(t), the solution can be driven to any
destination x(T ).

2Arthur Cayley (UK, 1821 - 1895)
3William Rowan Hamilton (Ireland, 1805 - 1865)
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Control

An example: Nelson’s car.

Two controls su�ce to control a four-dimensional dynamical system.

E. Sontag, Mathematical control theory, 2nd ed.,Texts in Applied Mathematics,vol.6,
Springer-Verlag, NewYork,1998.

E. Zuazua (FAU - AvH) NODE-Control-ML FAU, 11.04.2021 9 / 31



Control

Duality, J.-L. Lions, SIREV, 1988

Consider the adjoint system ⇢
�p0 = A⇤p, t 2 (0,T )
p(T ) = pT

(2)

and minimize

J('T ) =
1

2

Z T

0
| B⇤p |2 dt + hx0, p(0)i

Then
u = B⇤bp

is the control of minimal L2-norm.4

And the functional J is coercive i↵ the Kalman rank condition is satisfied.

The Kalman condition is equivalent to the Unique Continuation property

B⇤p ⌘ 0 ) pT ⌘ 0.

Which can be recast in terms of the spectrum of A⇤: For all eigenvector e such that A⇤e = �e,
then B⇤e 6= 0.
Similar to the Shizuta-Kawashima condition for partially hyperbolic systems and related to
hypoellipticity and hypocoercivity.

4This confirms Wiener’s vision ”..control and communication...”
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Control

Unique continuation
)

Observability inequality

||pT ||2  C

Z T

0
| B⇤' |2 dt

)

Control

With a constructive methodology to build controls of minimal norm, minimizing a quadratic
functional with various advantages:

Suitable variants allow to build bang-bang or sparse controls.

This leads to numerical algorithms,

It can be adapted to the infinite-dimensional setting (PDE).
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Deep learning

Universal approximation theorem I
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Deep learning

Universal approximation theorem II
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Deep learning

Supervised learning

Goal: Find an approximation of a function f⇢ : Rd ! Rm from a dataset
�
~xi , ~yi

 N
i=1

⇢ Rd⇥N ⇥ Rm⇥N

drawn from an unknown probability measure ⇢ on Rd ⇥ Rm.

Classification: match points (images) to respective labels (cat, dog).
�! Popular method: training a neural network.
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Deep learning

Residual neural networks
[1] K He, X Zhang, S Ren, J Sun, 2016: Deep residual learning for image recognition
[2] E. Weinan, 2017. A proposal on machine learning via dynamical systems.
[3] R. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, 2018. Neural ordinary di↵erential equations.
[4] E. Sontag, H. Sussmann, 1997, Complete controllability of continuous-time recurrent neural networks.

ResNets

(
xk+1
i = xki + hWk�(Akxki + bk ), k 2 {0, . . . ,Nlayers � 1}

x0i = x̃i , i = 1, ...,N

where h = 1, � globally Lipschitz �(0) = 0.

nODE
Layer = timestep; h = T

Nlayers
for given T > 0

(
ẋi (t) = W (t)�(A(t)xi (t) + b(t)) for t 2 (0,T )

xi (0) = ~xi , i = 1, ...,N

The problem becomes then a giant simultaneous control problem in which each initial datum xi (0)
needs to the driven to the corresponding destination for all i = 1, ...,N with the same controls:

What happens when T ! 1, i.e. in the deep, high number of layers regime?5 6

5C. Esteve, B. Geshkovski, D. Pighin, E. Zuazua, Large-time asymptotics in deep learning, arXiv:2008.02491
6D. Ruiz-Balet & Zuazua, Neural ODE control for classification, approximation and transport, arXiv:2104.05278
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Deep learning

Special features of the control of ResNets

Nonlinearities are unusual in Mechanics: � is flat in half of the phase space.

We need to control many trajectories (one per item to be classified) with the same control! 7

The very nature of the activation function � allows actually to achieve this monster simultaneous
control goal. The fact that � leaves half of the phase space invariant while deforming the other
one, allows to build dynamics that are not encountered in the classical ODE systems in mechanics
and for which such kind of simultaneous control property is unlikely or even impossible.

7This would be impossible for instance, for the standard linear system x0 = Ax + Bu.
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Deep learning

Turnpike for ResNets
T ! 1 ⇠ Nlayers ! 1.

Turnpike refers to the fact that, in long time-horizons, optimal controls and trajectories are
exponentially close to the optimal steady-state control and state in most of the time-horizon.

Supervised Learning* () minimize8

1

N

Z T

0
kPx(t)� yk2dt + ↵ kuk2H1(0,T ;Rdu ). (SL*)

y := [~y1, . . . , ~yN ], u := [A,W , b] in (16) and P : Rd ! Rm.

Theorem (Turnpike): Under controllability assumptions, for any su�ciently large T ,
an optimal solution (uT , xT ) to (SL*)–(16) satisfies

kuT kH1(0,T ;Rdu )  C1

and
kPxT (t)� yk  C2e

�µt 8t 2 [0,T ]

for some C1 > 0, C2 > 0 and µ > 0, all independent of T .

8Note that in this context we do not impose a perfect classification. We just expect that it will occur with high probability as
an outcome of the optimar control problem
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Deep learning

T ! 1 ⇠ Nlayers ! 1.

E. Zuazua (FAU - AvH) NODE-Control-ML FAU, 11.04.2021 19 / 31

0 10 20 30 40
t (layers)

10

20

30

40

|x1(t)|2

|x2(t)|2



Deep learning

Classical SL problem?

P : Rd ! Rm, minimize
1

N
kPx(T )� yk2 + ↵ kuk2H1(0,T ;Rdu ). (SL)

Convergence of x(T ) to P�1({y}) when T ! 1, but slow (no turnpike).
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Deep learning
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Deep learning
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Deep learning
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Deep learning

What is actually the ResNet doing?

The classification problem is a relaxed version of the simultaneous control problem. We are given
N points in Rd and M classes yi 2 {1, ...,M}.

We then proceed as follows:

1 We identify a region in the euclidean space corresponding to each class of data.

2 Look for a control strategy (A,W , b) bringing simultaneously all points to the location
corresponding to its class.

x(1)�axis

x(2)�axis

x(1)�axis

x(2)�axis

S3

S2

S1
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Deep learning

Basic control actions

ẋ(t) = W (t)�(A(t)x(t) + b(t)).

b(t) induces a time-dependent translation of the Euclidean space. It plays an important role
to place the center of the action of the sigmoid.

A(t) compresses, expands, and induces rotations in the euclidean space with di↵erent
objectives:

Compression can help gathering data into clusters so that they might be manipulated simultaneously.
Expansion allows to separate data of di↵erent classes to better focus the action of the control on
just one of them.
Rotations allow to better choose the hemisphere where the action will be focused.

W (t) determines the direction and intensity with which the flow will evolve in the active
hemisphere.
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Deep learning

Some canonical flows induced by nODE
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Deep learning

Controlling one datum
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Deep learning
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Deep learning

Classification by control

Theorem (Classification, Domènec Ruiz-Balet EZ, 2021)

a Let � be the ReLU.
Let d � 2, and N,M � 2.
Let {xi}Ni=1 ⇢ Rd be data to be classified into disjoint open non-empty subsets Sm,m = 1, ...,M
with labels m = m(i), i = 1, ...,N.
Then, for every T > 0, there exist control functions A,W 2 L1

�
(0,T );Rd⇥d

�
and

b 2 L1
�
(0,T ),Rd

�
such that the flow associated to the Neural ODE, when applied to all initial

data {xi}Ni=1, classifies them simulatenously, i.e.

�T (xi ;A,W , b) 2 Smi , 8i = 1, ...,N.

Furthermore,

Controls are piecewise constant with a maximal finite number of switches of the order of
O(N). They also lie in BV .

The control time T > 0 can be made arbitrarily small (scaling).

The complexity of controls diminishes when initial data are structured in clusters.

The complexity of controls also diminishes when the control requirement is relaxed so that
not all data need to be classified.

The targets Sm can be just N distinct points in the euclidean space.

aRelated results for smooth sigmoids using Lie bracket control techniques: A. Agrachev and A. Sarychev,
arXiv:2008.12702, (2020).

Proof: INDUCTION! Out of the argument above showing how a badly placed datum can be
properly driven to the corresponding class.
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Deep learning

Neural transport equations

Note that the di↵erential equation

(
ẋ = W (t)�(A(t)x + b(t))

x(0) = x0

corresponds to the characteristics of the transport equation:

(
@t⇢+ divx

⇥
(W (t)�(A(t)x + b(t)))⇢

⇤
= 0

⇢(0) = ⇢0

The results above can therefore be understood in terms of the controllability of the transport
equation: ”Atomic initial data can be driven to atomic final targets”. This also allow for a more
general interpretation in terms of approximation control in Wasserstein-1 distance. Or for systems
of transport equations, so that each scalar component corresponds to the density within one of
the classes of data.

This establishes a link to the Theory of Optimal Transport: Neural Transport? 9

9

W1(µ, ⌫) = sup
Lip(g)1

⇢Z

Rd
gdµ �

Z

Rd
gd⌫

�

where Lip(g)  1 stands for the class of Lipschitz functions with Lipschitz constant less or equal than 1.
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Deep learning
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Deep learning

Neural transport equations

Note that the di↵erential equation

(
ẋ = W (t)�(A(t)x + b(t))

x(0) = x0

corresponds to the characteristics of the transport equation:

(
@t⇢+ divx

⇥
(W (t)�(A(t)x + b(t)))⇢

⇤
= 0

⇢(0) = ⇢0

The results above can therefore be understood in terms of the controllability of the transport
equation: ”Atomic initial data can be driven to atomic final targets”. This also allow for a more
general interpretation in terms of approximation control in Wasserstein-1 distance. Or for systems
of transport equations, so that each scalar component corresponds to the density within one of
the classes of data.

This establishes a link to the Theory of Optimal Transport: Neural Transport? 9

9

W1(µ, ⌫) = sup
Lip(g)1

⇢Z

Rd
gdµ �

Z

Rd
gd⌫

�

where Lip(g)  1 stands for the class of Lipschitz functions with Lipschitz constant less or equal than 1.
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Deep learning

Universal approximation

As a corollary we can achieve Universal Approximation.
By density, it is su�cient to consider targets that are simple piecewise constant functions.
The complexity of the needed controls depends on the nature of functions one aims to
approximate.
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Deep learning

Concluding remarks
An extraordinary and fertile field in the interplay between Dynamical Systems, Control, Machine Learning and applications

Control and dynamical systems tools allow to explain the amazing e�ciency of Neural
Networks (NN) in some specific applications.

Long-time / Turnpike control arise naturally in Deep Learning

Interesting open questions:

How to deal with Neural ODEs that switch in dimension of the Euclidean phase space.
Are there results explaining how the clustering of data (number of separating interfaces needed)
diminishes in higher dimensions?
How close is our piecewise constant control strategy from the optimal one (in the Pontryagin sense?)
How does our control strategy compare to those obtained in a purely NN setting?
How does the complexity of the controls diminish when we relax the classification criteria?
Links with Optimal Transport.
Other objectives: Unsupervised learning?

My sincere thanks to collaborators: A. Porretta (Roma 2), E. Trélat (Paris Sorbonne), M.
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