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Abstract. In this paper, by using the Brunovsky normal form, we provide a refor-
mulation of the problem consisting in finding the actuator design which minimizes the
controllability cost for finite-dimensional linear systems with scalar controls. Such
systems may be seen as spatially discretized linear partial differential equations with
lumped controls. The change of coordinates induced by Brunovsky’s normal form
allows us to remove the restriction of having to work with diagonalizable system dy-
namics, and does not entail a randomization procedure as done in past literature on
diffusion equations or waves. Instead, the optimization problem reduces to a mini-
mization of the norm of the inverse of a change of basis matrix, and allows for an easy
deduction of existence of solutions, and for a clearer picture of some of the problem’s
intrinsic symmetries. Numerical experiments help to visualize these artifacts, indicate
further open problems, and also show a possible obstruction of using gradient-based
algorithms – this is alleviated by using an evolutionary algorithm.
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1. Introduction

Due to their importance in many engineering applications, optimal design problems
consisting in finding the location wherein a control of least amplitude actuates and
ensures the controllability of the underlying system have been investigated in several
works over the past decades, in of both the finite and infinite dimensional dynamical
systems context. The simplest setting in which one can formulate the fundamental
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problem is that of finite-dimensional linear systems with scalar controls:{
y′(t)−Ay(t) = bu(t) in (0, T ),

y(0) = y0,
(1.1)

where A ∈ Mn×n(R) and b ∈ Rn. Let us assume that (A, b) is controllable, namely,
that the Kalman rank condition is satisfied:

span
{
b, Ab, . . . , An−1b

}
= Rn. (1.2)

Now, it is well-known (see [Zuazua, 2007]) that the control u(·) of minimal L2(0, T )–
norm steering (1.1) to 0 in any given time T > 0 satisfies

‖u‖L2(0,T ) 6 C(b, T ) ‖y0‖ (1.3)

for some constant C(b, T ) > 0 (which also depends on the dynamics A) and for all
y0 ∈ Rn. So, for fixed T > 0, by denoting

C∗(b, T ) := inf
{
C(b, T ) > 0: (1.3) holds

}
= inf
‖y0‖=1

‖Γb(y0)‖L2(0,T ),

where Rn 3 y0 7→ Γb(y0) = u ∈ L2(0, T ) is the "datum to minimal L2–norm control"
operator, the problem consisting of finding an actuator b which minimizes the cost of
control may be formulated as

min
b∈Sn−1

C∗(b, T ). (1.4)

As it is often done in control theory, looking at problems from the perspective of the
adjoint may be more illustrative. We recall that (1.1) is controllable if and only if the
adjoint system {

p′(t) +A>p(t) = 0 in (0, T ),

p(T ) = pT ,
(1.5)

is observable in any time T > 0, in the sense that there exists a constant CT (b) > 0
such that

CT (b) ‖p(0)‖2 6
∫ T

0

∣∣〈b, p(t)〉∣∣2 dt (1.6)

holds for all pT ∈ Rn. If we assume assume that A> is diagonalizable, i.e., it ad-
mits a sequence of eigenvalues {λ1, . . . , λn} and an associated sequence of eigenvectors
{Ψ1, . . . ,Ψn} forming an orthonormal basis of Rn, we may rewrite the smallest observ-
ability constant C∗T (b) by using separation of variables. Indeed, since

p(t) =
n∑
j=1

aje
−λj(T−t)Ψj for t ∈ [0, T ],

where aj := 〈pT ,Ψj〉, and setting cj := aje
−λjT , it may readily be seen that the smallest

constant C∗T (b) > 0 such that (1.6) holds can be written as

C∗T (b) = inf∑n
j=1 |cj |2=1

∫ T

0

∣∣∣∣∣∣
n∑
j=1

cje
λjt〈b,Ψj〉

∣∣∣∣∣∣
2

dt

= inf∑n
j=1 |cj |2=1

 n∑
j=1

c2
j

∣∣〈b,Ψj〉
∣∣2 e2λjT − 1

e2λj
+ 2

n∑
j=1

j−1∑
k=1

ckcj〈b,Ψj〉〈b,Ψk〉
e2(λj+λk)T − 1

2(λj + λk)

 .
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However, there is no direct way to simplify the above identity – due to the appearance
of cross terms when expanding the square – without making specific assumptions on
the coefficients cj of the initial data (e.g., by randomizing them as done in previous
literature, as discussed in a subsequent section).

1.1. Our contributions. The goal of this work is to rewrite (1.4) in a problem which
is more tractable from both an analytical and computational perspective, and does not
require 1). the system to be diagonalizable, or 2). a randomization procedure of the
Fourier coefficients of the initial data. We do so by leveraging the finite-dimensional
and scalar control structure. Namely,

• By using the Brunovsky normal form ([Brunovskỳ, 1970], see Lemma 2.1), we
discover that we can rewrite (1.4) as a minimization problem for the norm of
the inverse of a change of basis matrix. In particular, the cost C∗(T, b) can
be written as the tensor product of a function of T and another function of
b. Hence, any optimal actuator b∗ is independent of the time horizon T . See
Proposition 2.1.

• We further rewrite the reformulated minimization problem as a maximization
of the smallest eigenvalue of a related, symmetric and positive definite matrix.
(See Lemma 2.2.) This variational formulation allows us to ensure the existence
of solutions (see Proposition 2.2) and also an invariance of the cost with respect
to orthogonal transformations which commute with the system dynamics A (see
Proposition 3.1). The latter, in turn, entails non-uniqueness in some cases.

• Finally, in Section 4, we present numerical experiments on three different ex-
amples (in low dimensions) to illustrate the insinuated artifacts and stimulate
prospective directions and open problems.

Remark 1. Note that since the Kalman rank condition is equivalent to having1 〈b,Ψ〉 6=
0 for all Ψ : AΨ = λΨ, the functional is nontrivial.

1.2. Background. Actuator optimization problems such as the one studied in this
work can be formulated easily for a wide variety of finite and infinite dimensional control
systems. In particular, such problems are the motivation of a series of works by Privat,
Trélat, and Zuazua [Privat et al., 2013a,b, 2015, 2016, 2017, 2019]. (See also [Gimperlein
and Waters, 2017; Bergounioux et al., 2019] for subsequent studies, [Trélat, 2018] for
a concise presentation, and [Morris, 2010; Kalise et al., 2018] for problems with fixed
initial data.) In these works, Privat, Trélat, and Zuazua consider the setting of linear
partial differential equations (typically diffusion equations or waves) – to illustrate their
approach, let us consider the adjoint heat equation

−pt −∆p = 0 in Ω× (0, T ),

p = 0 in ∂Ω× (0, T ),

p|t=T = pT in Ω,

(1.7)

1This fact follows by a unique continuation argument, see e.g. [Tucsnak and Weiss, 2009, Section
1.5] for more detail (where this property is referred to as the Hautus test); see also [Beauchard and
Zuazua, 2011, Lem. 1] where this test referred to as the Shizuta-Kawashima (SK) condition is used in
the context of hypocoercivity.
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where Ω ⊂ Rd. Equation (1.7) is observable in any time T > 0 and from any open and
non-empty subset ω ⊂ Ω in the sense that the observability inequality

CT (ω)‖p(0)‖2L2(Ω) 6
∫ T

0

∫
ω
|p(t, x)|2 dx dt (1.8)

for some constant CT (ω) > 0 and for all pT ∈ L2(Ω). In this setting, the dual and
equivalent problem to optimal actuator design, is that of optimal sensor placement,
which consisting in answering: What is the domain ω∗ ⊂ Ω with |ω∗| = γ such that the
smallest constant CT (ω∗) > 0 for which (1.8) holds, is minimized?

The approach of these works involves separation of variables using a basis of eigen-
functions −∆Ψj = λjΨj . Sticking to the design problem for (1.7) – (1.8) for ease of
presentation, one would decompose the solution of (1.7) into this basis as p(t, x) =∑∞

j=1 aje
−λj(T−t)Ψj(x). If one defines bj := aje

−λjT , the shape optimization problem
can be addressed by examining

CT (ω) = inf∑∞
j=1 |bj |2=1

∫ T

0

∫
ω

∣∣∣∣∣∣
∞∑
j=1

bje
λjt Ψj(x)

∣∣∣∣∣∣
2

dx dt

= inf σ

{e(λj+λk)T − 1

λj + λk

∫
ω

Ψj(x)Ψk(x) dx

}
j,k

 ,

where σ denotes the spectrum of the intervening infinite-dimensional, symmetric, and
nonnegative matrix. This is a challenging spectral optimization problem since little is
known about the mixed terms

∫
ω Ψj(x)Ψk(x) dx. Indeed, even in the case of the disk,

the restriction of inner products of arbitrary Bessel functions to subsets ω ⊂ Ω cannot
be computed explicitly.

In order to avoid computing these mixed terms, Privat, Trélat and Zuazua replace
{aj}j∈N by a sequence of real-valued random variables {βνj aj}j∈N,ν∈X ; the random vari-
ables {βνj }j∈N,ν∈X are independent and identically distributed, of mean 0 and variance
1, and have fast decay (e.g., following a Bernouilli distribution). The authors then study
the case of an averaged observability constant, in which the mixed terms vanish when
expanding the quadratic term:

Crand
T (ω) = inf σ

{e(λj+λk)T − 1

λj + λk
E(βνj β

ν
k )

∫
ω

Ψj(x)Ψk(x) dx

}
j,k


= inf σ

({
e2λjT − 1

2λj

∫
ω

Ψj(x)2 dx

}
j

)

= inf
j∈N

e2λjT − 1

2λj

∫
ω

Ψj(x)2 dx.

It is to be noted herein that the randomization hypothesis renders the shape opti-
mization problem significantly more tractable, but of course, with the price that there
might be a gap between the deterministic and the randomized problem. Going back
to the deterministic problem is thus very challenging, which motivates our approach of
reformulating the deterministic control (or observation) cost in a different coordinate
system.
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Remark 2. Note that, formulated as such for linear finite-dimensional systems, (1.4)
does not strictly represent a finite-dimensional, discretized version of localized actuator
or sensor problems for partial differential equations (such as (1.7)). Rather, whenever A
is a numerical discretization of some differential operator in one space dimension (e.g.,
by finite-differences), (1.4) can be seen as finding the optimal controller location for a
corresponding lumped control system. In the context of the heat equation for instance,
this would be {

yt(t, x)− yxx(t, x) = b(x)u(t) in (0, T )× (0, 1),

y(t, 0) = y(t, 1) = 0 in (0, T ),
(1.9)

and A could thus represent the finite-difference Laplacian.

Notation. For n > 2, we denote Sn−1 := {x ∈ Rn : ‖x‖ = 1}, and by GLn(R) the
group of invertible matrices. Unless otherwise stated, we denote by ‖ · ‖ the standard
euclidean (`2) norm.

2. Reformulation via Brunovsky’s normal form

We begin our study by motivating and recalling the Brunovsky normal form, as to
enhance the clarity of the subsequent results. Consider the n-th order linear equation

ζ(n)(t) + k1ζ
(n−1)(t) + . . .+ knζ(t) = u(t), (2.1)

with real constant coefficients {ki}ni=1. By setting z :=
[
ζ ζ ′ . . . ζ(n−1)

]>, one sees that
the above equation is equivalent to the linear system

z′(t) = Az(t) + enu(t), (2.2)

where en := [0, . . . , 0, 1]> denotes the last vector of the canonical basis of Rn, and

A =


0 1 0 . . . 0

0 0 1
...

...
. . . . . . 0

0 . . . 0 0 1
−kn . . . . . . . . . −k1

 (2.3)

is a companion matrix. A natural question that arises is the converse: When can a
constant coefficient linear system

y′(t) = Ay(t) + bu(t) (2.4)

where A ∈Mn×n(R) and b ∈ Rn be transformed to (2.2) via y = Pz for some invertible
matrix P ∈Mn×n(R)?

Note that, should such a relation hold, then

z′(t) =
(
P−1y

)′
(t) =

(
P−1AP

) (
P−1y

)
(t) +

(
P−1b

)
u(t)

=
(
P−1AP

)
z(t) +

(
P−1b

)
u(t),

and so we are led to ask if there exists an invertible matrix P ∈ Mn×n(R) such that
P−1AP is a companion matrix, and P−1b = en.

To answer such a question, the Brunovsky’s normal form comes into play.



6 BORJAN GESHKOVSKI AND ENRIQUE ZUAZUA

Lemma 2.1 (Brunovsky normal form, [Brunovskỳ, 1970]). Let A ∈ Mn×n with n > 2
be given. If there exists a vector b ∈ Rn such that (A, b) satisfy the Kalman rank
condition (1.2), then there exists an invertible matrix P = P (b) ∈Mn×n(R) such that

A = PAP−1 and b = Pen, (2.5)

where A is the companion matrix of A defined as

A =


0 1 0 . . . 0

0 0 1
...

...
. . . . . . 0

0 . . . 0 0 1
−an . . . . . . . . . −a1

 , (2.6)

where {a1, . . . , an} are the coefficients of the characteristic polynomial of A

det(A− xId) :=

n∏
j=1

(x− λj)rj = xn + a1x
n−1 + . . .+ an−1x+ an = 0.

Moreover, the matrix P (b) ensuring (2.5) is unique, its columns {f1, . . . , fn} being given
by

fk =


b k = nAn−k +

n−k∑
j=1

ajA
n−k−j

 b, 1 6 k 6 n− 1.
(2.7)

Conversely, if there exists an invertible matrix P ∈ Mn×n(R) such that A = PAP−1,
then (A, b), with b := Pen, satisfies the Kalman rank condition (1.2).

For the sake of completeness and clarity, we provide a proof in the appendix (see also
[Brunovskỳ, 1970; Trélat, 2005]). The Brunovsky normal form has found great success in
a variety of contexts, going as far as gradient descent convergence for machine learning
applications ([Hardt et al., 2016]). Before proceeding, let us provide some comments.

Remark 3. A well-known result in linear algebra states that a matrix A ∈ Mn×n(R)
is similar to its companion matrix A (i.e., there exists a P ∈ GLn(R) such that A =
PAP−1) if and only if A has a cyclic vector (i.e., there exists some b ∈ Rn such that
(1.2) holds) – see for instance [Horn and Johnson, 2012, Theorem 3.3.15]. In fact, one
sees that Lemma 2.1 is nothing but a rewriting of this fact. Furthermore, both conditions
are equivalent to A having all of its eigenspaces with dimension 6 1. Hence, a sufficient
condition for a square matrix A to be similar to its companion matrix (or equivalently,
to have a cyclic vector) is that it has n distinct eigenvalues. This will be the case for
the examples we shall consider; a notable one being the finite-difference discretization of
the Dirichlet Laplacian in 1d, whose eigenvalues are precisely λj = − 4

h2
sin2

(
πj

2(n+1)

)
for j = 1, . . . , n (see [Vichnevetsky and Bowles, 1982]).

By virtue of the change of coordinates provided by Brunovsky canonical form, we can
obtain the following result which allows us to consider an equivalent, but more explicit
representation of the cost to be minimized.
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Proposition 2.1 ((1.4) in Brunovsky coordinates). Let A ∈ Mn×n(R) with n > 2 be
given, and suppose that b ∈ Rn is such that (A, b) satisfies the Kalman rank condition
(1.2). Then,

C(b, T ) =
(∥∥P−1(·)

∥∥⊗ κ(·)
)

(b, T ) :=
∥∥P−1(b)

∥∥κ(T ),

where κ(T ) > 0 denotes the cost of controllability for (A, en) (and thus depends solely
on A).

Consequently, whenever A is similar to its companion matrix A, problem (1.4) is
equivalent to

inf
b∈Sn−1

∥∥P−1(b)
∥∥ . (2.8)

Remark 4. In other words, one sees that now the cost function is independent of T , and
hence an optimal design b∗ ∈ Sn−1 will be as well. One should avoid confusion in this
insight, as clearly a minimal L2(0, T )–norm control will depend on the time horizon since
the controllability cost C∗(b, T ) will too – the splitting of time and controller variables
does not contradict existing results which ensure that κ(T ) decays as T ↗ ∞, and
explodes like γT−

n+1
2 with γ = (n − 1)!

(
An−1 · en−1

)−1 as T ↘ 0 (see [Seidman,
1988]).

Proof of Proposition 2.1. Let us suppose that there exists a vector b ∈ Rn such that
(A, b) is controllable, i.e., (A, b) satisfies (1.2). We consider the system{

z′(t)− Az(t) = enu(t) in (0, T ),

z(0) = z0,
(2.9)

which is also controllable. Moreover, given any T > 0, there exists a constant κ(T ) > 0
depending only on T and A (and thus A) such that the minimal L2–norm function u(·)
ensuring controllability for (1.2) satisfies

‖u‖L2(0,T ) 6 κ(T ) ‖z0‖ (2.10)

for all z0 ∈ Rn. Note that the cost of control κ(T ) > 0, defined as the smallest constant
appearing in (2.10), is a priori independent of b ∈ Rn, since the companion matrix A is
itself independent of b and depends only on A via its characteristic polynomial. Since
A = P−1AP and en = P−1b, we see that

z′(t)− P−1APz(t) = P−1b u(t) for t ∈ (0, T ), (2.11)

and multiplying by P to the left, we obtain

(Pz)′(t)−A(Pz)(t) = bu(t) for t ∈ (0, T ). (2.12)

Therefore, with y = Pz, we recover the system (1.1) from (2.9) – (2.6). By virtue of
the above computations, and (2.10), we deduce

‖u‖L2(0,T ) 6 κ(T ) ‖z0‖ = κ(T )
∥∥P−1y0

∥∥
6 κ(T )

∥∥P−1
∥∥ ‖y0‖ .

This bound is sharp, as the cost of control of the original system (1.1) is precisely

C(b, T ) := κ(T )
∥∥P−1(b)

∥∥ .
This concludes the proof. �
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In other words, the transformation induced by writing the Brunovsky normal form of
the original system (1.1) has allowed to perform a separation of variables of the control
cost. Hence, the problem of choosing the controller b ∈ Sn−1 so that the cost of control
of (1.1) is optimized, i.e. (1.4), can be reformulated to the problem of optimizing the
norm of the inverse of change-of-basis matrix P (b).

2.1. Computing the norm of P−1(b). As we have seen in what precedes, provided
there exists b ∈ Rn such that (A, b) satisfies the Kalman rank condition, the change-
of-basis matrix P (b) ∈ GLn(R) is fully determined out of the coefficients of the char-
acteristic polynomial of A, and the value of b. It would however be convenient to
have a simplified description of the norm of P−1(b). The norm which canonically ap-
pears in (2.8) is the standard operator norm, namely

∥∥P−1(b)
∥∥ := sup‖x‖=1

∥∥P−1(b)x
∥∥

(where the underlying norm is the euclidean one), which could be defined as the largest
eigenvalue of an associated symmetric and positive definite matrix, and hence avoids
computing the inverse.

In fact, one has the following characterization.

Lemma 2.2 (Variational form). Suppose that A ∈ Mn×n with n > 2 is similar to its
companion matrix. Problem (2.8) is then equivalent to

max
b∈Sn−1

λ1

(
P (b)P (b)>

)
. (2.13)

Here λ1(M) denotes the smallest eigenvalue of a matrix M ∈Mn×n(R).

Proof of Lemma 2.2. Noting that (P (b)−1)>P (b)−1 is a symmetric and positive definite
matrix (by virtue of the Kalman rank condition, which holds due to the equivalence
with A being similar to its companion matrix), it thus admits a sequence of n real
eigenvalues 0 < λ1 6 . . . 6 λn. Moreover using classical results from linear algebra, we
have ∥∥P (b)−1

∥∥ =

√
λn

(
(P (b)−1)>P (b)−1

)
, (2.14)

and, noting that
(
P (b)−1

)>
=
(
P (b)>

)−1, we see that(
P (b)−1

)>
P (b)−1 =

(
P (b)>

)−1
P (b)−1 =

(
P (b)P (b)>

)−1
.

Using once again the symmetry of P (b)P (b)>, we see that

λn

(
(P (b)P (b)>)−1

)
=

1

λ1(P (b)P (b)>)
. (2.15)

Accordingly, by positivity and the convexity of the square root, the optimisation problem
(2.8) is equivalent to (2.13). �

Remark 5. We may, for instance, also consider an explicit representation of the inverse
of P−1(b) by the Cayley-Hamilton formula

P−1(b) =
1

det(P (b))

n−1∑
s=0

P (b)s
∑

k1,k2,...,kn−1

n−1∏
l=1

(−1)kl+1

lklkl!
trace(P l(b))kl ,

where kl > 0 solve the linear Diophantine equation s+

n−1∑
l=1

lkl = n− 1, and consider the

Frobenius norm instead of the standard operator norm in (2.8). Such a formulation is
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however not all too appealing for numerical purposes due to the implicit need to solve a
Diophantine equation in each iteration of the minimization algorithm.

Another way to characterize the inverse could be by using the Cramer formula, but this
becomes difficult to track when n > 3 due to the involved form of the minors composing
the adjunct matrix. In any case, such explicit formulas for the inverse of P (b) appear
quite convoluted and difficult to use for a further analysis.

In view of the equivalent characterization of (2.8) given by (2.13), and the well-known
continuity results for eigenvalues with respect to parameters whenever the underlying
matrix possesses such continuity2, we may deduce the following result.

Proposition 2.2. Suppose that A ∈ Mn×n(R) with n > 2 is similar to its companion
matrix. Then, both problems (2.8) and (2.13) admit a solution b∗ ∈ Sn−1.

This result is a priori not evident when looking at the equivalent problem of minimizing
the norm of the inverse of P (b), but follows as a direct corollary.

3. Symmetries

A question which merits asking however, and which does not seem that obvious at
first glance since it is not quite clear how one may study the convexity of b 7−→ P−1(b)
(or concavity of b 7−→ λ1

(
P (b)P (b)>

)
), is that of uniqueness of minimizers (or the lack

thereof). There is no reason as to why one may expect uniqueness. In fact, we prove
the following result, which stipulates an invariance of the functional with respect to
orthogonal transformations which commute with the system dynamics A.

Proposition 3.1 (Invariants). Let A ∈Mn×n(R) with n > 2 be similar to its compan-
ion matrix, and let R ∈Mn×n(R) be such that

(i) [A,R] = AR−RA = 0 (i.e. A and R commute);
(ii) R ∈Mn×n is orthogonal, meaning that RR> = R>R = Idn.

Then we have that
min
b∈Sn−1

∥∥P−1(Rb)
∥∥2

= min
b∈Sn−1

∥∥P−1(b)
∥∥2
. (3.1)

In other words, provided a minimizer b∗, one may, provided commutativity with A,
rotate b∗ to obtain another minimizer Rb∗.

For example, as seen in the numerical experiments in the following section, the finite-
difference Dirichlet Laplacian in n = 2:[

−2 1
1 −2

]
,

commutes with the orthogonal matrices[
−1 0
0 −1

]
,

[
0 1
1 0

]
,

[
0 −1
−1 0

]
.

2All eigenvalues of a matrix M(t) are continuous functions of t whenever the entries of M(t) are
continuous functions of t. This fact holds whether or not M(·) is invertible and/or positive definite
(see e.g., [Kato, 2013, pp. 116]).
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Proof of Proposition 3.1. We will make use of the characterization (2.14) – (2.15) of the
spectral norm of P−1(·). In other words, we recall that since P (·)P (·)> is a symmetric
and positive definite matrix, we have that∥∥P−1(·)

∥∥2
=

1

λ1 (P (·)P (·)>)
, (3.2)

where λ1

(
P (·)P (·)>

)
denotes the smallest eigenvalue of P (·)P (·)>. Let us thus con-

centrate on investigating the invariance properties of λ1.
Let b ∈ Rn be fixed. We recall that by the Rayleigh’s min-max theorem, we have

λ1

(
P (b)P (b)>

)
:= min

x∈Rn \{0}

〈P (b)P (b)>x, x〉
‖x‖2

.

On another hand, making use of (2.7), we may see that

P (b) =
[
p1(A) . . . pn(A)

]︸ ︷︷ ︸
∈ Mn×n2 (R)

b . . .
b


︸ ︷︷ ︸
∈Mn2×n(R)

, (3.3)

where

pk(A) :=


An−k +

n−k∑
j=1

ajA
n−k−j for k 6 n− 1,

Id for k = n.

(3.4)

After some computations using (3.3), we can deduce that

P (b)P (b)> =

n∑
k=1

pk(A)bb>pk(A)>. (3.5)

The above representation combined with the Rayleigh quotient characterization yield

λ1

(
P (b)P (b)>

)
:= min

x∈Rn \{0}

n∑
k=1

〈
pk(A)bb>pk(A)>x, x

〉
‖x‖2

= min
x∈Rn \{0}

n∑
k=1

〈
b>pk(A)>x, b>pk(A)>x

〉
‖x‖2

= min
x∈Rn \{0}

n∑
k=1

∥∥(pk(A)b)>x
∥∥2

‖x‖2
.

Now since [A,R] = 0 we clearly also have [pk(A),R] = 0 for k 6 n. Whence for x ∈ Rn,∥∥∥(pk(A)Rb)>x
∥∥∥2

=
∥∥∥(Rpk(A)b)>x

∥∥∥2
=
∥∥∥(pk(A)b)>R>x

∥∥∥2

holds. Since R> is orthogonal,∥∥(pk(A)Rb)>x
∥∥2

‖x‖2
=

∥∥(pk(A)b)>R>x
∥∥2

‖R>x‖2
.
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Clearly, since R is invertible,

min
y∈Rn \{0}

n∑
k=1

∥∥(pk(A)b)>y
∥∥2

‖y‖2
= min

x∈Rn \{0}

n∑
k=1

∥∥(pk(A)b)>R>x
∥∥2

‖R>x‖2
,

whence we may conclude the proof. �

4. Numerical experiments

We henceforth provide a brief numerical study of the optimization problem. We focus
on the reformulation provided by (2.13), which we recall consists in solving

max
b∈Sn−1

λ1

(
P (b)P (b)>

)
= max

b∈Sn−1
min

x∈Rn\{0}

〈
P (b)P (b)>x, x

〉
‖x‖2

. (4.1)

We recall the synthetic definition of P (b) and characterization of P (b)P (b)> in (3.3)
and (3.5), respectively. Given a matrix A ∈Mn×n(R) which is similar to its companion
matrix, we shall solve numerically the above optimization problem (i.e. find some
maximizer b∗ ∈ Rn) by using

• Case n = 2: The IPOPT method via CasADi ([Andersson et al., 2019]) in
Matlab.3 We make use of the power iteration algorithm to find the smallest
eigenvalue of the symmetric, positive-definite matrix P (b)P (b)> by a simple
spectral shift: we first find the largest eigenvalue λmax, and then find the largest
eigenvalue of P (b)P (b)> − λmax; the sum of both resulting eigenvalues yields
the desired smallest eigenvalue. We emphasize the necessity of not using a pre-
defined routine for computing the eigenvalue, due to the fact that automatic
differentiation requires a graph-like object to be able to differentiate and obtain
gradients, and traceability with respect to the optimization variable is in general
not provided in a pre-defined routine.
• Case n > 3: Due to a lack of convergence of IPOPT for n > 3, which could
be due to non-concavity, we make use of an evolutionary algorithm4. Namely,
we use the differential evolution algorithm implemented in SciPy ([Storn and
Price, 1997]). (Such obstacles have been encountered – and bypassed – by use
of a genetic in related works, see [Hébrard and Henrott, 2003; Freitas, 1999].)

The algorithms suffer from a curse of dimensionality and are, at least for the examples
presented below, providing answers up to n 6 10 (an optimization run for n = 10 took
around 8h on a personal computer). We provide three basic experiments to motivate
possible characterizations of optimal solutions depending on the symmetry properties
of the system dynamics A.

Remark 6. The likely cause of the lack of convergence of gradient-based methods is the
lack of concavity of the functional b 7→ λ1

(
P (b)P (b)>

)
. Let us briefly comment on this

artifact. By using the Rayleigh characterization of λ1, we see that to differentiate one
needs to inject derivatives inside the min. Formally applying Danskin’s theorem ([Dan-
skin, 1966]), to differentiate b 7→ λ1

(
P (b)P (b)>

)
it would roughly suffice to differentiate

the map Ψ : b 7→ 〈Mbb>M>x, x〉 for fixed x ∈ Rn, where M ∈ Mn×n(R) is fixed. In

3see https://github.com/borjanG/optimal.controller. Experiments were conducted on a per-
sonal MacBook Pro laptop (2.4 GHz Quad-Core Intel Core i5, 16GB RAM, Intel Iris Plus Graphics
1536 MB).

4We thank Emmanuel Trélat for this insight and suggestion.

https://github.com/borjanG/optimal.controller
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essence, this reduces to differentiating the square matrix bb> ∈ Mn×n(R) with respect
to b – a first differentiation yields a 3-tensor D1 ∈ Rn×n×n where D1

k,j,` = ∂b`(bb
>)j,k =

bjδ`,k + bkδ`,j, where δj,k denotes the Kronecker delta. A second differentiation would
yield a 4-tensor D2 ∈ Rn×n×n×n, where D2

j,k,`,r = ∂br

(
D1
k,j,`

)
= δr,jδ`,k + δr,kδj,`. This

would mean that the Hessian of Ψ is very sparse and possibly not negative-definite.

Example 4.1 (Heat equation with lumped control). We begin this section by consider-
ing a finite difference discretization of the one-dimensional heat equation{

yt(t, x)− yxx(t, x) = b(x)u(t) in (0, T )× (0, 1),

y(t, 0) = y(t, 1) = 0 in (0, T ).

Here b(x) ∈ R is a scalar function designating the location wherein the controller ac-
tuates with amplitude u(t) in each time t. By using the classical two-point difference
scheme for approximating the second derivative, we obtain the system

y′h(t)−A∆,hyh(t) = bhu(t) in (0, T ). (4.2)

Here h = 1
n−1 where n > 2 represents the number of spatial grid points, with bh ∈ Rn

representing the optimization variable, and

A∆,h :=
1

h2



−2 1 0 . . . 0

1 −2 1
...

0
. . . . . . . . . 0

... 1 −2 1
0 . . . 0 1 −2


being the standard finite-difference discretization of the Dirichlet Laplacian.

Let us henceforth address a couple of illustrative cases. We provide illustrations of
the results in Figure 1 and Figure 2.

Case 1): (n = 2). We shall begin by focusing our attention on the case n = 2, and
thus consider

A∆ =

[
−2 1
1 −2

]
, b =

[
b1
b2

]
.

In this case, several computations can be done explicitly. Indeed, first note that

P (b)P (b)> =

[
(2b1 + b2)2 + b21 (2b1 + b2)(b1 + 2b2) + b1b2

(2b1 + b2)(b1 + 2b2) + b1b2 (b1 + 2b2)2 + b22

]
,

whence

λ1

(
P (b)P (b)>

)
= 4b1b2 + 3

(
b21 + b22

)
− 2
((

2b21 + 2b1b2 + b22
)(
b21 + 2b1b2 + 2b22

)) 1
2
.

Making use of Lagrange multipliers and symbolic computation, one can find that the
above function has 4 maximizers. Numerically, we find the following 4 maximizers:

b∗ =

[
b∗1
b∗2

]
∈
{[
−0.257983
0.96614944

]
,

[
0.257983
−0.96614944

]
,

[
0.96614944
−0.257983

]
,

[
−0.96614944

0.257983

]}
. (4.3)
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Figure 1. Example 4.1 (n = 2). Left : The 4 maximizers on S1 found
by the IPOPT algorithm, as indicated in (4.3). Right : the graph of the
function S1 3 b 7→ λ1(P (b)P (b)>), wherein we see 1). the maximum
equal to 0.24913 attained at the computed maximizers located on the left
plot; 2). the zeros are attained at points which do not satisfy the Kalman
rank condition, which are precisely the 4 points with |b1| = |b2| =

√
2

2 ;
3). the rotational symmetry of the cost functional.

We depict these maximizers on S1 in Figure 1. Interestingly enough, we see that[
−1 0
0 −1

] [
0.96614944
−0.257983

]
=

[
−0.96614944

0.257983

]
[
0 1
1 0

] [
0.96614944
−0.257983

]
=

[
−0.257983
0.96614944

]
[

0 −1
−1 0

] [
0.96614944
−0.257983

]
=

[
0.257983
−0.96614944

]
,

whence one may generate all the maximizers from [0.96614944,−0.257983]> and apply-
ing the orthogonal (rotation) matrices appearing in the identities just above, all of which
commute with A∆. This may also be seen in Figure 1.
Case 2): (n = 3). We also provide the numerical results in the case n = 3, and
depict the functional to be maximized in Figure 2. We numerically find the following 8
maximizers:

b∗ ∈

{−0.7633
0.6325
0.1311

 ,
−0.1311

0.6325
−0.7633

 ,
−0.1311
−0.6325
0.7633

 ,
 0.7633
−0.6325
−0.1311

 , (4.4)

−1.346 ∗ 10−7

0.44707
−0.8944

 ,
4.975 ∗ 10−7

−4.44707
0.8944

 ,
−9.089 ∗ 10−8

0.44707
−0.8944

 ,
−4.8519 ∗ 10−8

0.44707
−0.8944

}.
We again note a similar rotational symmetry among the obtained maximizers. The
latter can be visualized as the peaks in brightly colored patches in Figure 2. We do not
conjecture that these maximizers are the sole ones that the functional possesses, as the
yellow patches appearing in Figure 2 could contain multiple peaks.
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Figure 2. Example
4.1 (n = 3).
The functional
b 7→ λ1(P (b)P (b)>) on
S2; the opposite side
of the sphere manifests
the same pattern. We
dispose of 8 maximizers
at which the maximum
value equal to ∼ 0.0399
is attained. Rotational
symmetry is also
apparent.
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Example 4.2 (Wave equation with lumped control). We now consider a finite-difference
discretization of the one-dimensional wave equation with lumped control:{

ztt(t, x)− zxx(t, x) = b(x)u(t) in (0, T )× (0, 1),

z(t, 0) = z(t, 1) = 0 in (0, T ).

By setting y := [z, zt]
>, we rewrite the equation in the above system in the canonical

first-order form as

yt(t, x)−
[

0 Id
∂2
x 0

]
y(t, x) =

[
0
b(x)

]
u(t) in (0, T )× (0, 1).

When the Dirichlet Laplacian is discretized as in the previous examples, we find ourselves
with a linear control system in R2n, with system dynamics

A�,h :=

[
0 Idn

A∆,h 0

]
with A∆,h as in Example 4.1. We depict the shape of the functional b 7→ λ1(P (b)P (b)>)
in Figure 4 (n = 2) and Figure 5 (n = 3). We in fact see that the functional is identical
to that of the heat case, thus the found maximizers are as well. This is due to the
following result.

Proposition 4.1. Let P�(b) ∈ GL2n(R) denote the change-of-basis matrix for A�,h ∈
M2n×2n, and P∆(b) ∈ GLn(R) that for A∆,h ∈Mn×n(R). Then

P�(b)P�(b)> =

[
P∆(b)P∆(b)> 0

0 P∆(b)P∆(b)>

]
. (4.5)

Consequently, λ1

(
P�(b)P�(b)>

)
= λ1

(
P∆(b)P∆(b)>

)
.

Proof of Proposition 4.1. We begin by recalling that (we drop the indexes h)

P�(b)P�(b)> =
2n∑
k=1

pk(A�)

[
0 0
0 bb>

]
pk(A�)>,
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Figure 3. Graphical depiction of Proposition 4.1: we display
P∆(b)P∆(b)> (top) and P�(b)P�(b)> (bottom) for n ∈ {8, 15, 30}, with
b picked at random per each selected n. More precisely, we display
the log10 of these matrices to enhance visibility. An interesting pattern
starts to appear for n > 26 as seen on the rightmost figures, likely due
to dimensionality.

with

pk(A�) :=


A2n−k
� +

2n−k∑
j=1

a�j A
2n−k−j
� k 6 2n− 1,

Id2n k = 2n.

We distinguish two cases.

Case 1): k is even. One can easily show by induction that

Ak� =

 A k
2
∆ 0

0 A
k
2
∆

 , (4.6)

and, moreover, a�j = 0 for j odd and a�2j = a∆
j for j even. Hence,

pk(A�) =

 A 2n−k
2

∆ 0

0 A
2n−k

2
∆

+

2n−k∑
j=2

a∆
j
2

 A 2n−k−j
2

∆ 0

0 A
2n−k−j

2
∆

 .
Setting k = 2κ and j = 2r, we see that

p2κ(A�) =

[
An−κ∆ 0

0 An−κ∆

]
+

n−κ∑
r=1

a∆
r

[
An−κ−r∆ 0

0 An−κ−r∆

]
=

[
pκ(A∆) 0

0 pκ(A∆)

]
.



16 BORJAN GESHKOVSKI AND ENRIQUE ZUAZUA

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0
1

0.05

0.1

0.5 1

0.15

0.50

0.2

0

0.25

-0.5
-0.5

-1 -1

Figure 4. Example 4.2 (n = 2). The maximizers and the functional
are identical to the heat system in Example 4.1.

Consequently, for k = 2κ, κ > 1,

p2κ(A�)

[
0 0
0 bb>

]
p2κ(A�)>

=

[
0 0
0 pκ(A∆)bb>pκ(A∆)>

]
. (4.7)

Case 2): k is odd. One can, once again, easily show by induction that

Ak� =

 0 A
k−1
2

∆

A
k+1
2

∆ 0

 .
Hence,

pk(A�) =

 0 A
2n−k−1

2
∆

A
2n−k+1

2
∆ 0

+

2n−k−1∑
j=2

a∆
j
2

 0 A
2n−k−j−1

2
∆

A
2n−k−j+1

2
∆ 0

 .
By setting k = 2κ− 1 with κ > 1, and j = 2r, we find

p2κ−1(A�) =

[
0 An−κ∆

An−κ+1
∆ 0

]
+

n−κ∑
r=1

a∆
r

[
0 An−κ−r∆

An−κ+r+1
∆ 0

]
.

It then follows that for κ > 1,

p2κ−1(A�)

[
0 0
0 bb>

]
p2κ−1(A�)> =

[
pκ(A∆)bb>pκ(A∆)> 0

0 0

]
. (4.8)

Combining (4.7) and (4.8), we may conclude. �

Example 4.3 (Advection-diffusion equation with lumped control). We now consider
a system which is non-diagonalizable, hence existing methods based on randomization
are not applicable. Namely, we consider the finite difference discretization of the one-
dimensional advection-diffusion equation{

yt(t, x)− yxx(t, x) + yx(t, x) = b(x)u(t) (0, T )× (0, 1),

y(t, 0) = y(t, 1) = 0 (0, T ),
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Figure 5. Example
4.2 (n = 3).
The functional
b 7→ λ1(P (b)P (b)>)
on S2 (and thus the
maximizers) are the
same as for the heat
system in Example 4.1.

as well as {
yt(t, x)− yxx(t, x)− yx(t, x) = b(x)u(t) (0, T )× (0, 1),

y(t, 0) = y(t, 1) = 0 (0, T ).

Using a finite difference approximation as for Example 4.1 and in particular a centered
difference scheme for the advection term, we obtain a couple of finite-dimensional control
systems with system dynamics of the form

A±∂x :=
1

h2



−2 1 0 . . . 0

1 −2 1
...

0
. . . . . . . . . 0

... 1 −2 1
0 . . . 0 1 −2

+
1

2h


0 ±1 0 . . . 0

∓1 0 ±1
...

...
. . . . . . 0

0 . . . ∓1 0 ±1
0 . . . . . . ∓1 0

 .

We provide illustrations of the results in Figure 6 (n = 2) and Figure 7 (n = 3).
In the case n = 2, the (approximate) maximal value of 0.32236 of the functional

(same for both A∂x and A−∂x) is attained at the points

b∗∂x ∈
{[
−0.9548099

0.296895

]
,

[
0.9548099
−0.296895

]}
,

b∗−∂x ∈
{[
−0.296895
0.9548099

]
,

[
0.296895
−0.9548099

]}
. (4.9)

Note that the maximizers b∗∂x and b∗−∂x are themselves an axial symmetry of one another.
Similarly, for n = 3, we find

b∗∂x ∈


 −0.8716

0.4901
−9.34 ∗ 10−9

 ,
 −0.8716

0.4901
1.246 ∗ 10−6

 0.8716
−0.4901

−7.297 ∗ 10−8

 ,
 0.8716
−0.4901

1.541 ∗ 10−7

 , (4.10)

as well as

b∗−∂x ∈


−9.229 ∗ 10−8

0.4901
−0.8716

 ,
−3.581 ∗ 10−8

0.4901
−0.8716

−2.223 ∗ 10−7

−0.4901
0.8716

 ,
1.787 ∗ 10−7

−0.4901
0.8716

 .

(4.11)
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Figure 6. Example 4.3 (n = 2). Left : The 2 maximizers on S1 for
both A−∂x (top) and A∂x (bottom), as indicated in (4.9). Right : the
graph of the function S1 3 b 7→ λ1(P (b)P (b)>) for both A−∂x (top) and
A∂x (bottom), wherein we see that the maximum ∼ 0.32236 is attained
at the computed maxima located on the left plots; axial symmetry of the
maximizers, as well as the rotational symmetry between both functionals
is also apparent.

5. Concluding remarks and outlook

By using the Brunovsky normal form, we discovered a reformulation of the problem
consisting in finding the actuator which minimizes the controllability cost for finite
dimensional linear systems with scalar controls. Such problems can be seen as, for
instance, discretizations of one-dimensional lumped control problems for linear partial
differential equations. We emphasize the fact that our study does not require the matrix
generating the dynamics to be diagonalizable or rely on a randomization procedure of
the initial data (as done in past literature in the infinite-dimensional setting).

The Brunovsky reformulation provides a formulation of the control cost as a tensor
product as it separates the time horizon and the controller. The resulting optimization
problem reduces to the optimization of the norm of the inverse of a change of basis
matrix, and allows us to stipulate the existence of minimizers (or maximizers for an
equivalent variational problem), as well as non-uniqueness due to an invariance of the
cost with respect to orthogonal transformations.
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Figure 7. Example 4.3 (n = 3). The functional b 7→ λ1(P (b)P (b)>)
on S2. The maximizers (found in (4.10) and (4.11)) for both A−∂x (left)
and A∂x (right) may be found in the bright yellow patches, which repli-
cate on the opposite sides of the sphere.

Let us emphasize several caveats and obstacles regarding our study, which we hope
would shed some light on the possible directions of research, in view of providing a
complete resolution of the optimal design problem in the deterministic case.

• The optimization of a functional which includes the inverse of a matrix is
expected to not scale well with the dimension and thus possibly suffer from
a curse of dimensionality. Whence, one should be wary regarding the transfer
of the insights of the finite dimensional to the infinite dimensional setting.
• Even after considering the variational reformulation of the problem, which con-
sists in maximizing the first eigenvalue of a positive-definite symmetric matrix,
there are no obvious ways (to our knowledge) to solve such a mixed max–min
problem over a manifold such as Sn−1. In fact, we saw that gradient-based
methods seem to fail to converge in dimensions n > 3 – we hence used a global
optimization method based on an evolutionary algorithm, which, nonetheless,
requires ∼ 8h to run when n = 10 on a personal machine. We believe that
a full clarification of the underlying difficulty of a numerical resolution of this
problem in higher dimension, as well as the proposal of novel methods for its
resolution are required.

In addition, we believe that there are a multitude of problems regarding the analysis
of this problems which ought to be conducted. These include the following.

5.1. Time-dependent coefficients, neural networks. Once all of the aforemen-
tioned problems are solved, one could look to time-dependent coefficient problems,
namely for systems of the form

x′(t)−A(t)x(t) = b(t)u(t) in (0, T ). (5.1)

Note that the sparsity of b(t) could also be enhanced imposing other restrictions of the
form ‖b(·)‖L1(0,T ;Rn) = 1.

Considering systems of the form (5.1) is particularly important in the context of
deep learning via continuous-time residual neural networks (ResNets) (see [Weinan,
2017; Esteve et al., 2020; Ruiz-Balet and Zuazua, 2021; Geshkovski, 2021]), which are
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systems taking the form

x′(t) = w(t)σ(x(t)) + b(t) in (0, T ). (5.2)

Here w(t) ∈ Mn×n(R) and b(t) ∈ Rn play the role of the controls, and σ ∈ Lip(R).
Simplifying by assuming that σ = Id, fixing w(t), and writing b(t) = bu(t) for b ∈ Rn,
we deduce a system of the form (5.1).

For neural networks such as (5.2), minimizing the cost of control by means of controls
which are as sparse as possible is clearly relevant for computational purposes due to the
high dimensional data involved, and a linear study along with perturbation arguments
could yield important insights (see [Yagüe and Geshkovski, 2021] for an optimal control
approach to the sparsity issue). There is, of course, a huge gap between the linear con-
stant coefficient case presented above and the study of optimal controllers for ResNets.
But, the problems discussed above are deemed necessary in the bigger picture.

5.2. Uniqueness modulo rotations. We have seen that optimal actuators are in
general not unique due to the invariance of the minimization (or maximization) problem
with respect to orthogonal matrices which commute with the dynamics A. It would be
of interest to see, at least in very particular test cases, whether a general result can
be obtained characterizing the sets of optimal controllers depending on the symmetry
properties of the matrix A. In such a case, one could perhaps deduce a uniqueness result
modulo the rotated solutions. This insight is reinforced by our numerical simulations
in dimensions n = 2, 3.

5.3. Non-scalar controls and PDEs. The Brunovsky normal form can also be ex-
tended to the case m > 1, and thus b ∈ Mn×m(R). It would be of interest to see
how the original problem of finding an optimal b may be reformulated by means of the
Brunovsky coordinates in the case m > 1. This naturally raises the question of PDE
shape design, which seems out of the scope of this particular method.

5.4. Optimization methods on manifolds. The algorithms we used need not always
converge to a global maximizer lying on Sn−1. The algorithm could be enforced by
considering optimization methods (including gradient descent) specifically designed to
variables lying on manifolds (see e.g., [Boumal, 2020]5). We leave this open to further
investigation.

Acknowledgments. We thank Yannick Privat for generally helpful comments.

Funding. This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement No.765579-ConFlex. E.Z.
has received funding from the Alexander von Humboldt-Professorship program, the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement NO. 694126-DyCon), the Transregio 154 Project “Mathematical Modeling, Simulation and
Optimization Using the Example of Gas Networks” of the German DFG, grant MTM2017-92996-C2-
1-R COSNET of MINECO (Spain), by the Elkartek grant KK-2020/00091 CONVADP of the Basque
government and by the Air Force Office of Scientific Research (AFOSR) under Award NO: FA9550-18-
1-0242.

5We thank Arieh Iserles for this reference.



OPTIMAL ACTUATOR DESIGN VIA BRUNOVSKY’S NORMAL FORM 21

Appendix A. Auxiliary proofs

Proof of Lemma 2.1. We only prove the first direction of the statement. We split the
proof in two steps.
Step 1). Let us first assume that (2.5) is fulfilled for some invertible matrix P ∈
Mn×n(R), whose columns we denote {fk}nk=1. From b = Pen, we immediately deduce
that b = fn, while each columns of the system AP = PA yields

Afn = fn−1 − a1fn
Afn−1 = fn−2 − a2fn
...

Af3 = f2 − an−2fn
Af2 = f1 − an−1fn
Af1 = −anfn.

(A.1)

Here, we recall that a1, . . . , an denote the coefficients of the characteristic polynomial
of A. The above relation can readily be rewritten to read as

fn = b,

Afk = fk−1 − an−kfn, for all k ∈ {2, . . . , n},
Af1 = −anfn.

(A.2)

Using the fact that (A.2) entails fk−1 = Afk + an−kb for k > 2, by a brief induction
argument we may further rewrite (A.2) to see that

fk =


b, k = nAn−k +

n−k∑
j=1

ajA
n−k−j

 b 1 6 k 6 n− 1.
(A.3)

Step 2). Let us now define

P (b) :=
[
f1 | . . . | fn

]
, (A.4)

with the columns {fk}nk=1 of P (b) being defined as in (A.3). We shall prove that this
P (b) is invertible, and is the unique matrix such that (2.5) holds.

We begin by noting that

P (b) =
[
An−1b An−2b An−3b . . . A3b A2b Ab b

]
+a1

[
An−2b An−3b An−4b . . . A2b Ab b 0

]
+a2

[
An−3b An−4b An−5b . . . Ab b 0 0

]
+ . . .

+an−3

[
A2b Ab b . . . 0 0 0 0

]
+an−2

[
Ab b 0 . . . 0 0 0 0

]
+an−1

[
b 0 0 . . . 0 0 0 0

]
.

(A.5)
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Whence, by the Kalman rank condition, P has full rank and is thus invertible. Left-
multiplying the first column in (A.5) by A, one obtains

Af1 =
(
An + a1A

n−1 + . . .+ an−2A
2 + an−1A

)
b = −anb, (A.6)

where the rightmost equality is a consequence of the Cayley–Hamilton theorem. Now,
the definition of the columns in (A.3) combined with (A.6) leads us to deduce that (A.2)
holds for the columns {fk}nk=1. Hence AP = PA, and one clearly also has Pen = b.
Thus, P defined in (A.4) is invertible and is the unique matrix such that (2.5) holds.
This concludes the proof. �

Remark 7 (On the uniqueness of P ). Another way to see that P is the unique invertible
matrix such that (2.5) holds is the following. Let P0 be another matrix such that

A = P0AP
−1
0 and b = P0en. (A.7)

Then, since P is invertible, we may write

P0 = QP (A.8)

for some matrix Q ∈Mn×n(R). Thus

AQP = QPA = QAP, (A.9)

so Q commutes with A. Moreover, QPen = b. But then

Akb = AkQPen = QAkPen = QAkb for k > 1. (A.10)

Since the vectors Akb span Rn (by virtue of the Kalman rank condition), we conclude
that Q ≡ Id.
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