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Control of 1 � d vibrations of a string

The 1-d wave equation, with Dirichlet boundary conditions,
describing the vibrations of a flexible string, with control on one
end:

8
<

:

ytt � yxx = 0, 0 < x < 1, 0 < t < T
y(0, t) = 0; y(1, t) =v(t), 0 < t < T
y(x , 0) = y0(x), yt(x , 0) = y1(x), 0 < x < 1

y = y(x , t) is the state and v = v(t) is the control.
The goal is to stop the vibrations, i.e. to drive the solution to
equilibrium in a given time T : Given initial data {y0(x), y1(x)} to
find a control v = v(t) such that

y(x ,T ) = yt(x ,T ) = 0, 0 < x < 1.

Enrique Zuazua Control & numerics: Heat and Waves



Motivation The control of waves The heat equation Conclusions and PerspectivesWhy? What? A toy model The discrete approach Remedies

Enrique Zuazua Control & numerics: Heat and Waves



Motivation The control of waves The heat equation Conclusions and PerspectivesWhy? What? A toy model The discrete approach Remedies

The dual observation problem

The control problem above is equivalent to the following one, on
the adjoint wave equation:

8
<

:

'tt � 'xx = 0, 0 < x < 1, 0 < t < T
'(0, t) = '(1, t) = 0, 0 < t < T
'(x , 0) = '0(x), 't(x , 0) = '1(x), 0 < x < 1.

The energy of solutions is conserved in time, i.e.

E (t) =
1

2

Z
1

0

h
|'x(x , t)|2 + |'t(x , t)|2

i
dx = E (0), 80  t  T .

The question is then reduced to analyze whether the folllowing
inequality is true. This is the so called observability inequality:

E (0)  C (T )

Z
T

0

|'x(1, t)|
2 dt.
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The answer to this question is easy to gues: The observability
inequality holds if and only if T � 2.

E(0) 
� T
0 |'x(1, t)|2dt

Wave localized at t = 0 near the extreme x = 1 that propagates
with velocity one to the left, bounces on the boundary point x = 0
and reaches the point of observation x = 1 in a time of the order
of 2.

Enrique Zuazua Control & numerics: Heat and Waves



Motivation The control of waves The heat equation Conclusions and PerspectivesWhy? What? A toy model The discrete approach Remedies

Construction of the Control

Once the observability inequality is known the control is easy to
characterize. Following J.L. Lions’ HUM (Hilbert Uniqueness
Method), the control is

v(t) = 'x(1, t),

where u is the solution of the adjoint system corresponding to
initial data ('0, '1) 2 H1

0
(0, 1)⇥ L2(0, 1) minimizing the functional

J('0, '1) =
1

2

Z
T

0

|'x(1, t)|
2dt+

Z
1

0

y0'1dx� < y1, '0 >
H�1⇥H1

0

,

in the space H1

0
(0, 1) ⇥ L2(0, 1).

Note that J is convex. The continuity of J in H1

0
(0, 1) ⇥ L2(0, 1) is

guaranteed by the fact that 'x(1, t) 2 L2(0,T ) (hidden regularity).
Moreover,

COERCIVITY OF J = OBSERVABILITY INEQUALITY.
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The continuous numerical approach: Gradient algorithms

The control was characterized as being the minimizer over
H1

0
(0, 1) ⇥ L2(0, 1) of

J('0, '1) =
1

2

Z
T

0

|'x(1, t)|
2dt+

Z
1

0

y0'1dx� < y1, '0 >
H�1⇥H1

0

.

We produce an algorithm in which:

We replace J by some numerical approximation Jh with an
order h✓.

We apply a gradient iteration algorithm to Jh.
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The following holds:

Theorem

(S. Ervedoza & E. Z., 2011)
In

K ⇠ C | log(h)|

iterations, the controls vK
h

obtained after applying K iterations of
the gradient algorithm to Jh fulfill:

||v � vK
h

||  C | log(h)|max(✓,1)h✓.

Note that for the classical Finite Di↵erence and Finite Element
methods for the wave equation the convergence order is ✓ = 2/3.

We have developed the continuous program successfully!
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Note that the error estimate deteriorates if K >> C | log(h)|!!!
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... and, therefore, the method has to be used with much care
since, after all, we are dealing with an unstable, non-robust
algorithm....
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But one might want to take a shortcut controlling a
finite-dimensional reduced dynamics.

Set h = 1/(N + 1) > 0 and consider the mesh

x0 = 0 < x1 < ... < xj = jh < xN = 1 � h < xN+1 = 1,

which divides [0, 1] into N + 1 subintervals

Ij = [xj , xj+1], j = 0, ...,N.

Finite di↵erence semi-discrete approximation of the wave equation:

8
<

:

'00

j
�

1

h2
['j+1 + 'j�1 � 2'j ] = 0, 0 < t < T , j = 1, . . . ,N

'j(t) = 0, j = 0, N + 1, 0 < t < T
'j(0) = '0

j
, '0

j
(0) = '1

j
, j = 1, . . . ,N.
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From finite-dimensional dynamical systems to infinite-dimensional
ones in purely conservative dynamics.....
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Then it should be su�cient to minimize the discrete functional

Jh('
0, '1) =

1

2

Z
T

0

|'N(1, t)|2

h2
dt+h

NX

j=1

'1

j y
0

j � h
NX

j=1

'0

j y
1

j ,

which is a discrete version of the functional J of the continuous
wave equation since

�
'N(t)

h
=

'N+1 � 'N(t)

h
⇠ 'x(1, t).

Then

vh(t) = �
'?
N
(t)

h
.
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A NUMERICAL EXPERIMENT

Plot of the initial datum to be controlled for the string occupying
the space interval 0 < x < 1.
Plot of the time evolution of the exact control for the wave
equation in time T = 4.
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The control diverges as h ! 0.
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WHY?

The Fourier series expansion shows the analogy between
continuous and discrete dynamics.
Discrete solution:

~' =
NX

k=1

0

@ak cos

✓q
�h

k
t

◆
+

bkq
�h

k

sin

✓q
�h

k
t

◆1

A ~wh

k
.

Continuous solution:

' =
1X

k=1

✓
ak cos(k⇡t) +

bk
k⇡

sin(k⇡t)

◆
sin(k⇡x)
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Recall that the discrete spectrum is as follows and converges to the
continuous one:

�h

k
=

4

h2
sin2

✓
k⇡h

2

◆

�h

k
! �k = k2⇡2, as h ! 0

wh

k
= (wk,1, . . . ,wk,N)

T : wk,j = sin(k⇡jh), k , j = 1, . . . ,N.

The only relevant di↵erences arise at the level of the dispersion
properties and the group velocity. High frequency waves do not
propagate, remain captured within the grid, without never reaching
the boundary. This makes it impossible the uniform boundary
control and observation of the discrete schemes as h ! 0.

Enrique Zuazua Control & numerics: Heat and Waves



Motivation The control of waves The heat equation Conclusions and PerspectivesWhy? What? A toy model The discrete approach Remedies

Graph of the square roots of the eigenvalues both in the
continuous and in the discrete case. The gap is clearly independent
of k in the continuous case while it is of the order of h for large k
in the discrete one.

Enrique Zuazua Control & numerics: Heat and Waves



Motivation The control of waves The heat equation Conclusions and PerspectivesWhy? What? A toy model The discrete approach Remedies

A numerical phamtom

~' = exp
⇣
i
p

�N(h) t
⌘

~wN � exp
⇣
i
p

�N�1(h) t
⌘

~wN�1.

Spurious semi-discrete wave combining the last two
eigenfrequencies with very little gap:

p
�N(h) �

p
�N�1(h) ⇠ h.

h = 1/61, (N = 60), 0  t  120.
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Fourier filtering

To filter the high frequencies, i.e. keep only the components of the
solution corresponding to indexes: k  �/h with 0 < � < 1. This
guarantees that the group velocity remains uniformly bounded
below and allows observing uniformly filtered solutions in time
T (�) > 2 such that T (�) ! 2 as � ! 0.
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Relaxed controls:

Then, the filtering algorithm can be implemented as follows:

Minimize Jh over the class of filtered solutions with filtering
parameter 0 < � < 1 and T > T (�);

This yields controls v �
h
such that

v�
h

! v as h ! 0;
The corresponding states ~yh satisfiy:

⇡�(~yh) ⌘ ⇡�(~yh
0) ⌘ 0.

This is a relaxed version of the controllability condition.

Enrique Zuazua Control & numerics: Heat and Waves



Motivation The control of waves The heat equation Conclusions and PerspectivesWhy? What? A toy model The discrete approach Remedies

Numerical experiment, revisited, with filtering

graficas/filt_99_40.jpg

With appropriate filtering the control converges as h ! 0.
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The discrete approach when applied directly fails, but it can cured
borrowing ideas from the continuous analysis. The bonus is that:

We compute numerical approximations of the controls that
perform well, in an identified manner, controlling a Fourier
projection of solutions at the discrete level.

The algorithm converges is stable and robust, an the error
diminishes as the number of iterations ! 1.

Enrique Zuazua Control & numerics: Heat and Waves



Motivation The control of waves The heat equation Conclusions and PerspectivesWhy? What? A toy model The discrete approach Remedies

Controls in multi-d may develop complex and unexpected patterns,
in view of the laws of Geometric Optics.

G. Lebeau and M. Nodet, Experimental Study of the HUM Control
Operator for Linear Waves, Experimental Mathematics, 2010.
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Let n � 1 and T > 0, ⌦ be a simply connected, bounded domain
of Rn with smooth boundary �, Q = (0,T ) ⇥ ⌦ and
⌃ = (0,T ) ⇥ �:

8
<

:

yt � �u = v1! in Q
y = 0 on ⌃
y(x , 0) = y0(x) in ⌦.

(1)

1! denotes the characteristic function of the subset ! of ⌦ where
the control is active.
We assume that y0 2 L2(⌦) and v 2 L2(Q) so that (4) admits an
unique solution

y 2 C
�
[0,T ] ; L2(⌦)

�
\ L2

�
0,T ;H1

0 (⌦)
�
.

y = y(x , t) = solution = state, v = v(x , t) = control

Goal: To produce prescribed deformations on the solution u by
means of suitable choices of the control function v .
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The model: 8
<

:

yt � �y = v1! in Q
y = 0 on ⌃
y(x , 0) = y0(x) in ⌦.

(4)

Objective:
y(T ) ⌘ 0.

This corresponds to taking " = 0 in the approximate control
problem above.
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The control can be built as follows: Consider the functional

J('0) =
1

2

Z
T

0

Z

!
'2dxdt +

Z

⌦

'(0)y0dx . (5)

J : L2(⌦) ! R is continuous, and convex.
But, is it coercive?
If yes, the minimizer '̂0 exists and the control

v = '̂

where '̂ is the solution of the adjoint system corresponding to the
minimizer is the control such that

y(T ) ⌘ 0.
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As a consequence of this, even if the control is in L2, the data '0

of the adjoint system at time T (which is surely in H) tend not to
be in any reasonable space, thus making computations very hard.
T = 1, ! = (0.2, 0.8) : '0,M for M = 80 on ⌦ (Left) and on !
(Right).
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T = 1, ! = (0.2, 0.8) : k'M(·, x)X!(x)kL2(⌦) for M = 80 on
[0,T ] (Left) and on [0.92T ,T ] (Right).
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Several remedies have been derived in the literature, starting with
the pioneering work by R. Glowinski and J. L. Lions. One of them
is based on Tychonno↵ regularization. It consists on adding a
regularizing term to the functional to be minimized (or its discrete
version):

J"0('
0) =

1

2

Z
T

0

Z

!
'2dxdt+

"

2
||'0

||
2

L2
+

Z

⌦

'(0)u0dx . (9)

One can prove that, whenever the minimizer of the original
functional J belongs to L2, then the regularized controls converge
polynomially as " tends to zero.
But, as the numerical experiments show, the minimizer does not
belong to L2 not even to any H�s . 2

2
S. Micu & E. Z. Regularity issues for the null-controllability of the linear

1-d heat equation, Systems and Control Letters, 2011.
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Kannai transform allows transfering the results we have obtained
for the wave equation to other models and in particular to the heat
equation (Y. Kannai, 1977; K. D. Phung, 2001; L. Miller, 2004)

et�' =
1

p
4⇡t

Z
+1

�1

e�s
2/4tW (s)ds

where W (x , s) solves the corresponding wave equation with data
(', 0).

Wss � �W = 0 + Kt � Kss = 0 ! Ut � �U = 0,

Wss � �W = 0 + iKt � Kss = 0 ! iUt � �U = 0.

This can be actually applied in a more general abstract context
(Ut + AU = 0) but not when the equation has time-dependent
coe�cients.
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This can also be used in the context of control:

[Control of the wave equation in ⌦]
+

[1 � d controlled fundamental solution of the heat equation]
=)

[Control of the heat equation in ⌦].
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In a recent paper in collaboration with A. Münch we propose a
di↵erent strategy based on the following facts:3

A lot of work has been done to build e�cient algorithms to
compute exact controls for the wave equation.

The Kannai transform allows to construct the control of the
heat equation by convolution of the wave one with a 1 � d
heat kernel.

The method is laborious to be developed numerically but turns out
to be e�cient.

3
A. Münch and E. Z. Numerical approximation of null controls for the heat

equation through transmutation, J. Inverse Problems, 2010.
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L2(!)-norm of the control v vs time t for
(y0(x),T , c) = (sin(⇡x), 1, 1/10) (Left) and
(y0(x),T , c) = (sin(3⇡x), 1, 1/5) (Right).
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Standard L2-control vs Kannai control.
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Once more the wining strategy is a smart combination of the
continuous and discrete approaches.
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Conclusions

E�cient and rigorous numerical computation of controllers
can be built but often combining tools from the continuous
and the discrete approaches.

Plenty is still to be done in the interfaces between PDE,
Control, Numerics, Harmonic Analysis,...
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Perspectives

Multi-resolution filtering techniques.

Numerical control of waves in random media and in the
presence of noise.

Robust controllers.

Discrete version of Geometric Optics?

E�cient solvers of the ill-posed heat equation

Multiphysics systems: thermoelasticity, fluid-structure
interaction,...

Multiscale control (micro/macro),...
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