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Control

Historical perspective: Cybernetics

“Cybernétique” was proposed by the French physicist A.-M. Ampère in the XIX Century to
design the nonexistent science of process controlling. This was quickly forgotten until 1948, when
Norbert Wiener (1894–1964) chose “Cybernetics” as the title of his famous book.

Wiener defined Cybernetics as “ the science of control and communication in animals and
machines”.1

In this way, he established the connection between Control Theory and Physiology and
anticipated that, in a desirable future, engines would obey and imitate human beings.

1“What we want is a machine that can learn from experience.“ Alan Turing, 1947.
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Control

Controllability

Let n,m 2 N⇤ and T > 0 and consider the following linear finite-dimensional system

x 0(t) = Ax(t) + Bu(t), t 2 (0,T ); x(0) = x0. (1)

In (1), A is a n⇥ n real matrix, B is of dimensions n⇥m and x0 is the initial sate of the sytem in
Rn. The function x : [0,T ] �! Rn represents the state and u : [0,T ] �! Rm the control.
¿Can we control the state x of n components with only m controls, even if n >> m so that, for
instance x(T ) = 0?

Theorem

(1958, Rudolf Emil Kálmán (1930 – 2016 )) System (1) is controllable i↵

rank [B, AB, · · · ,An�1B] = n.
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Control

Sketch of the proof

From the variation of constants formula:

x(t) = eAtx0 +

Z t

0
eA(t�s)Bu(s)ds = eAtx0+

Z t

0

X

k�0

(t � s)k

k!
AkBu(s)ds.

By Cayley2-Hamilton’s 3 theorem Ak , for k � n, is a linear combination of I ,A, ...,An�1.

The Kalman rank condition assures that, manipulating the last term due to the variation of
constants formula, out of a strategic choice of the control u(t), the solution can be driven to any
destination x(T ).

2Arthur Cayley (UK, 1821 - 1895)
3William Rowan Hamilton (Ireland, 1805 - 1865)
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Control

An example: Nelson’s car.

Two controls su�ce to control a four-dimensional dynamical system.

E. Sontag, Mathematical control theory, 2nd ed.,Texts in Applied Mathematics,vol.6,
Springer-Verlag, NewYork,1998.
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Control

Duality, J.-L. Lions, SIREV, 1988

Consider the adjoint system ⇢
�p0 = A⇤p, t 2 (0,T )
p(T ) = pT

(2)

and minimize

J(pT ) =
1

2

Z T

0
| B⇤p |2 dt + hx0, p(0)i

Then
u = B⇤bp

is the control of minimal L2-norm.4

And the functional J is coercive i↵ the Kalman rank condition is satisfied.

The Kalman condition is equivalent to the Unique Continuation property

B⇤p ⌘ 0 ) pT ⌘ 0.

The observability inequality plays a key role

||pT ||2  C

Z T

0
| B⇤' |2 dt

4This confirms Wiener’s vision ”..control and communication...”
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Turnpike

Sonic boom
Francisco Palacios, Boeing, Long Beach, California, Project Manager and Aerodynamics Engineer

Goal: the development of supersonic aircrafts, su�ciently quiet to be allowed to fly
supersonically over land.

The pressure signature created by the aircraft must be such that, when reaching ground, (a)
it can barely be perceived by humans, and (b) it results in admissible disturbances to
man-made structures.

This leads to an inverse design or control problem in long time horizons.

Juan J. Alonso and Michael R. Colonno, Multidisciplinary Optimization with Applications to
Sonic-Boom Minimization, Annu. Rev. Fluid Mech. 2012, 44:505 – 526.

Many other challenging problems of high societal impact raise similar issues: climate change,
sustainable growth, chronically deseases, design of long lasting devices and infrastructures...
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Turnpike

Origins

Although the idea goes back to John von Neumann in 1945, Lionel W. McKenzie traces the term
to Robert Dorfman, Paul Samuelson, and Robert Solow’s ”Linear Programming and Economics
Analysis” in 1958, referring to an American English word for a Highway:5
6

... There is a fastest route between any two points; and if the origin and destination are
close together and far from the turnpike, the best route may not touch the turnpike.
But if the origin and destination are far enough apart, it will always pay to get on to the
turnpike and cover distance at the best rate of travel, even if this means adding a little
mileage at either end.

5A. J. Zaslavski, Springer, New York, 2006.
6L. Grüne, Automatica, 49, 725-734, 2013
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Turnpike

Substantiation and preliminary conclusion

We implement turnpike (or nearby) strategies most often. And it is indeed a good idea to do it!

But this requires that the system under consideration to be controllable/stabilisable.
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Turnpike Control The PDE-Turnpike Paradox

Wave propagation: Why do not we see the turnpike?

Typical controls for the wave equation exhibit an oscillatory behaviour, and this
independently of the length of the control time-horizon.

This fact is intrinsically linked to the oscillatory nature of wave propagation.

Waves are controlled through anti-waves, reproducing an oscillatory pattern.
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Turnpike

Heat and di↵usion processes: Why do not we see the turnpike either?

Typical controls for the heat equation exhibit unexpected oscillatory and concentration e↵ects.
This was observed by R. Glowinski and J. L. Lions in the 80’s in their works in the numerical
analysis of controllability problems for heat and wave equations.

Why? Lazy controls?
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Turnpike Control The PDE-Turnpike Paradox

Optimal controls are boundary traces of solutions of the adjoint problem through the optimality
system or the Pontryagin Maximum Principle, and solutions of the adjoint heat equation

�pt ��p = 0

look precisely this way.

Large and oscillatory near t = T they decay and get smoother when t gets down to t = 0. And
this is independent of the time control horizon [0,T ].

For wave-like equations ontrols are given by the solutions of the adjoint system

ptt ��p = 0

that exhibit endless oscillations.

First conclusion:
Typical control problems for wave and heat equations do not seem to exhibit the turnpike
property.
These are the controls of L2-minimal norm. There are many other possibilities for successful
control strategies (sparse controls by L

1-minimisation, bang-bang controls...)

May be the Turnpike Principle does not hold for for Partial Di↵erential Equations (PDE), i. e.
Infinite-Dimensional Dynamical Systems?
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Turnpike

The control problem for di↵usion : A closer look

Let n � 1 and T > 0, ⌦ be a simply connected, bounded domain of Rn with smooth boundary �,
Q = (0,T )⇥ ⌦ and ⌃ = (0,T )⇥ �:

8
<

:

yt ��y = f 1! in Q
y = 0 on ⌃
y(x , 0) = y0(x) in ⌦.

(3)

1! = the characteristic function of ! of ⌦ where the control is active.

We know that y0 2 L2(⌦) and f 2 L2(Q) so that (3) admits a unique solution

y 2 C
�
[0,T ] ; L2(⌦)

�
\ L2

�
0,T ;H1

0 (⌦)
�
.

y = y(x , t) = solution = state, f = f (x , t) = control

Goal: Drive the dynamics to equilibrium by means of a suitable choice of the control

y(·,T ) ⌘ y⇤(x).
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Turnpike

We address this problem fro a classical optimal control / least square approach:

min
1

2

Z T

0

Z

!
|f |2dxdt +

Z

⌦
|y(x ,T )� y⇤(x)|2dx

�
.

According to Pontryagin’s Maximum Principle the Optimality System (OS) reads

yt ��y = p1! in Q

�pt ��p = 0 in Q

y = 0 on ⌃

y(x , 0) = y0(x) in ⌦

p(x ,T ) = y(x ,T )� y⇤(x) in ⌦

p = 0 on ⌃.

And the optimal control is:
f (x , t) = p(x , t) in! ⇥ (0,T ).
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Turnpike Control Linear PDE revisited

By duality (Fenchel-Rockafellar) the adjoint p at time t = T , pT saturates the regularity
properties required to assure the well-posedness of the functional:

H = {pT : p(x , 0) 2 L
2(⌦)}

This is a huge space, allowing an exponential increase of Fourier coe�cients at high frequencies.
And, because of this, we observe the tendency of the control to concentrate all the action in the
final time instant t = T , incompatible with turnpike e↵ects4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!3

!2

!1

0

1

2

3

4
x 10

10

x

Tychono↵’s monster (1935)

4A. Münch & E. Z., Inverse Problems, 2010
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Turnpike

Remedy: Better balanced controls

Let us now consider the control f minimising a compromise between the norm of the state and
the control among the class of admissible controls:

min
1

2

Z T

0

Z

⌦
|y |2dxdt +

Z T

0

Z

!
|f |2dxdt +

Z

⌦
|y(x ,T )� y⇤(x)|2

�
.

Then the Optimality System reads

yt ��y = �p1! in Q

�pt ��p = y in Q

y = p = 0 on ⌃

y(x , 0) = y0(x) in ⌦

p(x ,T ) = y(x ,T )� y⇤(x) in ⌦

We now observe a coupling between p and y on the adjoint state equation!7

x

y

x

y

7A. Porretta & E. Z., SIAM J. Cont. Optim., 2013.
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Turnpike Control Linear PDE revisited

New Optimality System Dynamics

What is the dynamic behaviour of solutions of the new fully coupled OS?
For the sake of simplicity, assume ! = ⌦.

The dynamical system now reads
yt ��y = �p

pt +�p = �y

This is a forward-backward parabolic system.

A spectral decomposition exhibits the characteristic values

µ±
j

= ±
q

1 + �2
j

where (�j )j�1 are the (positive) eigenvalues of ��.

Thus, the system is the superposition of growing + diminishing real exponentials.

x

y

x

y
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Turnpike Control Linear PDE revisited

The turnpike property for the heat equation
New dynamics = combination of exponentially stable and unstable branches ⌘ compatible with turnpike

The turnpike behaviour is ensured when T ! 1 when the cost functional penalizes su�ciently
state and control.

[Controllability] + [Coercive in state + control cost] ! Turnpike

The same occurs for wave propagation5

5M. Gugat, E. Trélat, E. Zuazua, Systems and Control Letters, 90 (2016), 61-70.
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Turnpike Control General theory

Linear theory. Joint work with A. Porretta, SIAM J. Cont. Optim., 2013.

The same methods apply in the inifinite-dimensional context, covering in particular linear heat
and wave equations

Consider the finite dimensional dynamics

(
xt + Ax = Bu

x(0) = x0 2 RN
(2)

where A 2 M(N,N), B 2 M(N,M), with control u 2 L
2(0,T ;RM).

Given a matrix C 2 M(N,N), and some x
⇤ 2 RN , consider the optimal control problem

min
u

J
T (u) =

1

2

Z
T

0
(|u(t)|2 + |C(x(t)� x

⇤)|2)dt .

There exists a unique optimal control u(t) in L
2(0,T ;RM), characterized by the optimality

condition

u = �B
⇤
p ,

(
xt + Ax = �BB

⇤
p

x(0) = x0
,

(
�pt + A

⇤
p = C

⇤
C(x � x

⇤)

p(T ) = 0
(3)
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Turnpike Control General theory

The steady state control problem

The same problem can be formulated for the steady-state model

Ax = Bu.

Then there exists a unique minimum ū, and a unique optimal state x̄ , of the stationary control
problem

min
u

Js(u) =
1

2
(|u|2 + |C(x � x

⇤)|2) (4)

which is nothing but a constrained minimization in RN .
The optimal control ū and state x̄ satisfy

ū = �B
⇤
p̄ , Ax̄ = Bū , and A

⇤
p̄ = C

⇤
C(x̄ � x

⇤) .
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Turnpike Control General theory

We assume that
(A,B) is controllable, (5)

or, equivalently, that the matrices A, B satisfy the Kalman rank condition

Rank

h
B AB A

2
B . . . AN�1

B

i
= N . (6)

Concerning the cost functional, we assume that the matrix C is such that (void assumption when
C = Id)

(A,C) is observable (7)

which means that the following algebraic condition holds:

Rank

h
C CA CA

2 . . . CAN�1
i
= N . (8)

xt + Ax = Bu

J
T (u) =

1

2

Z
T

0
(|u(t)|2 + |C(x(t)� x

⇤)|2)dt
(
xt + Ax = Bu

�pt + A
⇤
p = C

⇤
Cx
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Turnpike Control General theory

Proofs

Proof # 1: Dissipativity

d

dt
[(x � x̄)(p � p̄)] = �

⇥
B

⇤(p � p̄)|2 + |C(x � x̄)|2
⇤

That is the starting point of a turnpike proof. Note however that it is much trickier than the
classical Lyapunov stability: Two boundary layers at t = 0 and t = T , moving time-horizon
[0,T ]...

Proof #2 : Riccati

Consider the Infinite Horizon Linear Quadratic Regulator (LQR) problem in [0,1) with null
target x⇤ ⌘ 0.
Employ Riccati feedback exponential stabilizator.
Cut-it-o↵ onto [0,T ].
Correct the boundary layer at t = T to match the terminal conditions .

Proof # 3: Singular perturbations Implement the change of variables t ! sT :

t 2 [0,T ] () s 2 [0, 1].

System
xt + Ax = Bu, t 2 [0,T ]

becomes
1

T
xs + Ax = Bu, s 2 [0, 1]

As T ! 1, " = 1/T ! 0.
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Turnpike Control Perspectives

Nonlinear problems
A. Porretta & E. Z., Mathematical Paradigms of Climate Science, Springer INdAM Series, 2016.

The theory can be extended for semilinear PDEs provided the target is small employing
linearization techniques.
But numerical simulations shows that the property is much more robust. 6

Developing a complete theorem, for large targets and deformations, is a challenging problem.

6Simulations by S. Volkwein for a cubic semilinear equation with large targets.
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Turnpike Control Perspectives

Heuristic explanation and practical use

In applications and daily life we use a quasi-turnpike principle, which is very robust and
ubiquitous, even in the context of multiple steady optima (local or global):

Step 1: Compute the optimal steady optimal control and state,
Step 2: Drive the system from the initial configuration to this steady state one;
Step 3: Remain in this steady configuration as long as possible;
Step 4: Exit this configuration if a terminal condition is to be met.
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Turnpike Control Perspectives

Warning! Long time numerics plays a key role: Geometric/Symplectic
integration; Well balanced numerical schemes...
Numerical integration of the pendulum (A. Marica)
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Turnpike Control Perspectives

An open problem and biblio

Further extend the turnpike theory for nonlinear PDE, getting rid of the smallness condition on
the target, which in numerical simulations seems to be unnecessary.

A. Porretta, E. Z., SIAM J. Control. Optim., 51 (6) (2013), 4242-4273.
A. Porretta, E. Z., Springer INdAM Series ”Mathematical Paradigms of Climate Science”, F.
Ancona et al. eds, 15, 2016, 67-89.
E. Trélat, E. Z., JDE, 218 (2015) , 81-114.
M. Gugat, E. Trélat, E. Z., Systems and Control Letters, 90 (2016), 61-70.
E. Z., Annual Reviews in Control, 44 (2017) 199-210.
E.Trélat, C. Zhang, E. Z., SIAM J. Control Optim. 56 (2018), no. 2, 1222–1252.
V. Hernández-Santamaria, M. Lazar, E.Z. Numerische Mathematik (2019) 141:455-493.
D. Pighin, N. Sakamoto, E. Z., IEEE CDC Proceedings, Nice, 2019.
G. Lance, E. Trélat, E. Z., Systems & Control Letters 142 (2020) 104733.
J. Heiland, E. Z., arXiv:2007.13621, 2020.
C. Esteve, H. Kouhkouh, D. Pighin, E. Z., arxiv.org/pdf/2006.10430, 2020.
M. Gugat, M. Schuster and E. Z., SEMA/SIMAI Springer Series, 2020.

And further interesting work by collaborators: S. Zamorano (NS), M. Warma & S. Zamorano,
Fractional heat,...

Our thanks to our FAU colleague Daniel Tenbrinck. He suggested to us to explore turnpike for
Neural Networks.
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Deep learning

Universal approximation theorem I
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Deep learning

Universal approximation theorem II
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Deep learning

Supervised learning

Goal: Find an approximation of a function f⇢ : Rd ! Rm from a dataset
�
~xi , ~yi

 N
i=1

⇢ Rd⇥N ⇥ Rm⇥N

drawn from an unknown probability measure ⇢ on Rd ⇥ Rm.

Classification: match points (images) to respective labels (cat, dog).
�! Popular method: training a neural network.
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Deep learning

Residual neural networks
[1] K He, X Zhang, S Ren, J Sun, 2016: Deep residual learning for image recognition
[2] E. Weinan, 2017. A proposal on machine learning via dynamical systems.
[3] R. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, 2018. Neural ordinary di↵erential equations.
[4] E. Sontag, H. Sussmann, 1997, Complete controllability of continuous-time recurrent neural networks.

ResNets

(
xk+1
i = xki + hWk�(Akxki + bk ), k 2 {0, . . . ,Nlayers � 1}

x0i = x̃i , i = 1, ...,N

where h = 1, � globally Lipschitz �(0) = 0.

nODE
Layer = timestep; h = T

Nlayers
for given T > 0

(
ẋi (t) = W (t)�(A(t)xi (t) + b(t)) for t 2 (0,T )

xi (0) = ~xi , i = 1, ...,N

The problem becomes then a giant simultaneous control problem in which each initial datum xi (0)
needs to the driven to the corresponding destination for all i = 1, ...,N with the same controls:

What happens when T ! 1, i.e. in the deep, high number of layers regime?8 9

8C. Esteve, B. Geshkovski, D. Pighin, E. Zuazua, Large-time asymptotics in deep learning, arXiv:2008.02491
9D. Ruiz-Balet & Zuazua, Neural ODE control for classification, approximation and transport, arXiv:2104.05278
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Deep learning

Special features of the control of ResNets

Nonlinearities are unusual in Mechanics: � is flat in half of the phase space.

We need to control many trajectories (one per item to be classified) with the same control!
10

The very nature of the activation function � allows actually to achieve this monster simultaneous
control goal. The fact that � leaves half of the phase space invariant while deforming the other
one, allows to build dynamics that are not encountered in the classical ODE systems in mechanics
and for which such kind of simultaneous control property is unlikely or even impossible.

10This would be impossible for instance, for the standard linear system x0 = Ax + Bu.
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Deep learning

Turnpike for ResNets
T ! 1 ⇠ Nlayers ! 1.

Turnpike refers to the fact that, in long time-horizons, optimal controls and trajectories are
exponentially close to the optimal steady-state control and state in most of the time-horizon.

Supervised Learning* () minimize11

1

N

Z T

0
kPx(t)� yk2dt + ↵ kuk2H1(0,T ;Rdu ). (SL*)

y := [~y1, . . . , ~yN ], u := [A,W , b] in (20) and P : Rd ! Rm.

Theorem (Turnpike): Under controllability assumptions, for any su�ciently large T ,
an optimal solution (uT , xT ) to (SL*)–(20) satisfies

kuT kH1(0,T ;Rdu )  C1

and
kPxT (t)� yk  C2e

�µt 8t 2 [0,T ]

for some C1 > 0, C2 > 0 and µ > 0, all independent of T .

11Note that in this context we do not impose a perfect classification. We just expect that it will occur with high probability as
an outcome of the optimar control problem
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Deep learning

T ! 1 ⇠ Nlayers ! 1.
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Deep learning

Classical SL problem?

P : Rd ! Rm, minimize
1

N
kPx(T )� yk2 + ↵ kuk2H1(0,T ;Rdu ). (SL)

Convergence of x(T ) to P�1({y}) when T ! 1, but slow (no turnpike).
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Deep learning

Classification by control

Theorem (Classification, Domènec Ruiz-Balet EZ, 2021)

a Let � be the ReLU.
Let d � 2, and N,M � 2.
Let {xi}Ni=1 ⇢ Rd be data to be classified into disjoint open non-empty subsets Sm,m = 1, ...,M
with labels m = m(i), i = 1, ...,N.
Then, for every T > 0, there exist control functions A,W 2 L1

�
(0,T );Rd⇥d

�
and

b 2 L1
�
(0,T ),Rd

�
such that the flow associated to the Neural ODE, when applied to all initial

data {xi}Ni=1, classifies them simulatenously, i.e.

�T (xi ;A,W , b) 2 Smi , 8i = 1, ...,N.

Furthermore,

Controls are piecewise constant with a maximal finite number of switches of the order of
O(N). They also lie in BV .

The control time T > 0 can be made arbitrarily small (scaling).

The complexity of controls diminishes when initial data are structured in clusters.

The complexity of controls also diminishes when the control requirement is relaxed so that
not all data need to be classified.

The targets Sm can be just N distinct points in the euclidean space.

aRelated results for smooth sigmoids using Lie bracket control techniques: A. Agrachev and A. Sarychev,
arXiv:2008.12702, (2020).

Proof: INDUCTION! Out of the argument above showing how a badly placed datum can be
properly driven to the corresponding class.
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Neural transport equations

The simultaneous control of the nODE(
ẋ = W (t)�(A(t)x + b(t))

x(0) = xi , i = 1, ...,N

to arbitrary terminal states
x(T ) = yi , i = 1, ...,N

in terms of the transport equation, leads to the control of an atomic initial datum from

⇢(x , 0) =
NX

i=1

mi�xi

to the terminal one

⇢(x ,T ) =
NX

i=1

mi�yi .

But note that, even if the locations of the masses are transported, the amplitude of the masses
do not vary.
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Deep learning

Concluding remarks
An extraordinary and fertile field in the interplay between Dynamical Systems, Control, Machine Learning and applications

Control and dynamical systems tools allow to explain the amazing e�ciency of Neural
Networks (NN) in some specific applications.

Long-time / Turnpike control arise naturally in Deep Learning

Interesting open questions:

How to deal with Neural ODEs that switch in dimension of the Euclidean phase space.
Are there results explaining how the clustering of data (number of separating interfaces needed)
diminishes in higher dimensions?
How close is our piecewise constant control strategy from the optimal one (in the Pontryagin sense?)
How does our control strategy compare to those obtained in a purely NN setting?
How does the complexity of the controls diminish when we relax the classification criteria?
Links with Optimal Transport.
Other objectives: Unsupervised learning?

My sincere thanks to collaborators: A. Porretta (Roma 2), E. Trélat (Paris Sorbonne), M.
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