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Ingham’s inequality

In this lecture we present two inequalities which have been successfully
used in the study of many 1-D control problems and, more precisely, to
prove observation inequalities. They generalize the classical Parseval’s
equality for orthogonal sequences. Variants of these inequalities were
studied in the works of Paley and Wiener at the beginning of the past
century (see [PW]).
The main inequality was proved by Ingham (see [I]) who gave a beautiful
and elementary proof (see Theorems 1 and 2 below). Since then, many
generalizations have been given (see, for instance, [BS], [HA], [BKL] and
[JM]).
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Ingham’s inequality

Theorem

(Ingham [I]) Let (λn)n∈Z be a sequence of real numbers and γ > 0 be such
that

λn+1 − λn ≥ γ > 0, ∀n ∈ Z. (1)

For any real T with
T > π/γ (2)

there exists a positive constant C1 = C1(T , γ) > 0 such that, for any finite
sequence (an)n∈Z,

C1

∑
n∈Z
| an |2≤

∫ T

−T

∣∣∣∣∣∑
n∈Z

ane
iλnt

∣∣∣∣∣
2

dt. (3)
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Ingham’s inequality

Proof

We first reduce the problem to the case T = π and γ > 1. Indeed, if T
and γ are such that Tγ > π, then∫ T

−T

∣∣∣∣∣∑
n

ane
iλnt

∣∣∣∣∣
2

dt =
T

π

∫ π

−π

∣∣∣∣∣∑
n

ane
i Tλn
π

s

∣∣∣∣∣
2

ds

=
T

π

∫ π

−π

∣∣∣∣∣∑
n

ane
iµns

∣∣∣∣∣
2

ds

where µn = Tλn/π. It follows that
µn+1 − µn = T (λn+1 − λn) /π ≥ γ1 := Tγ/π > 1.
We prove now that there exists C ′1 > 0 such that

C ′1
∑
n∈Z
| an |2≤

∫ π

−π

∣∣∣∣∣∑
n∈Z

ane
iµnt

∣∣∣∣∣
2

dt.
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Ingham’s inequality

Define the function

h : R→ R, h(t) =

{
cos (t/2) if | t |≤ π

0 if | t |> π

and let us compute its Fourier transform K(ϕ),

K(ϕ) =

∫ π

−π
h(t)e itϕdt =

∫ ∞
−∞

h(t)e itϕdt =
4 cosπϕ

1− 4ϕ2
.

On the other hand, since 0 ≤ h(t) ≤ 1 for any t ∈ [−π, π], we have that

∫ π

−π

∣∣∣∣∣∑
n

ane
iµnt

∣∣∣∣∣
2

dt ≥
∫ π

−π
h(t)

∣∣∣∣∣∑
n

ane
iµnt

∣∣∣∣∣
2

dt =
∑
n,m

anāmK(µn − µm)

= K(0)
∑
n

| an |2 +
∑
n 6=m

anāmK(µn − µm)

≥ 4
∑
n

| an |2 −
1

2

∑
n 6=m

(
| an |2 + | am |2

)
| K(µn − µm) |

= 4
∑
n

| an |2 −
∑
n

| an |2
∑
m 6=n

| K(µn − µm) | .
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Ingham’s inequality

Remark that:∑
m 6=n

| K (µn − µm) |≤
∑
m 6=n

4

4 | µn − µm |2 −1
≤
∑
m 6=n

4

4γ21 | n −m |2 −1

= 8
∑
r≥1

1

4γ21r
2 − 1

≤ 8

γ21

∑
r≥1

1

4r2 − 1
=

8

γ21

1

2

∑
r≥1

(
1

2r − 1
− 1

2r + 1

)
=

4

γ21
.

Hence, ∫ π

−π

∣∣∣∣∣∑
n

ane
iµnt

∣∣∣∣∣
2

dt ≥
(

4− 4

γ21

)∑
n

| an |2 .

If we take

C1 =
T

π

(
4− 4

γ21

)
=

4π

T

(
T 2 − π2

γ2

)
the proof is concluded.
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Ingham’s inequality

Theorem

Let (λn)n∈Z be a sequence of real numbers and γ > 0 be such that

λn+1 − λn ≥ γ > 0, ∀n ∈ Z. (4)

For any T > 0 there exists a positive constant C2 = C2(T , γ) > 0 such
that, for any finite sequence (an)n∈Z,

∫ T

−T

∣∣∣∣∣∑
n

ane
iλnt

∣∣∣∣∣
2

dt ≤ C2

∑
n

| an |2 . (5)
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Ingham’s inequality

Proof

Let us first consider the case Tγ ≥ π/2. As in the proof of the previous
theorem, we can reduce the problem to T = π/2 and γ ≥ 1. Indeed,∫ T

−T

∣∣∣∣∣∑
n

ane
iλnt

∣∣∣∣∣
2

dt =
2T

π

∫ π
2

−π
2

∣∣∣∣∣∑
n

ane
iµns

∣∣∣∣∣
2

ds

where µn = 2Tλn/π. It follows that
µn+1 − µn = 2T (λn+1 − λn) /π ≥ γ1 := 2Tγ/π ≥ 1.
Let h be the function introduced in the proof of Theorem 1. Since√

2/2 ≤ h(t) ≤ 1 for any t ∈ [−π/2, π/2] we obtain that∫ π
2

−π
2

∣∣∣∣∣∑
n

ane
iµnt

∣∣∣∣∣
2

dt ≤ 2

∫ π
2

−π
2

h(t)

∣∣∣∣∣∑
n

ane
iµnt

∣∣∣∣∣
2

dt ≤

≤ 2

∫ π

−π
h(t)

∣∣∣∣∣∑
n

ane
iµnt

∣∣∣∣∣
2

dt = 2
∑
n,m

anāmK (µn − µm) =
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Ingham’s inequality

= 8
∑
n

| an |2 +2
∑
n 6=m

anāmK (µn − µm) ≤

≤ 8
∑
n

| an |2 +
∑
n 6=m

(
| an |2 + | am |2

)
| K (µn − µm) | .

As in the proof of Theorem 1 we obtain that∑
m 6=n

| K(µn − µm) |≤ 4

γ2
1

.

Hence,∫ π
2

−π
2

∣∣∣∣∣∑
n

ane
iµnt

∣∣∣∣∣
2

dt ≤ 8
∑
n

| an |2 +
8

γ2
1

∑
n

| an |2≤ 8

(
1 +

1

γ2
1

)∑
n

| an |2

and (5) follows with C2 = 8
(
4T 2/(π2) + 1/γ2

)
.

When Tγ < π/2 we have that∫ T

−T

∣∣∣∑ ane
iλnt
∣∣∣2 dt =

1

γ

∫ Tγ

−Tγ

∣∣∣∑ ane
i λn

γ
s
∣∣∣2 ds ≤ 1

γ

∫ π/2

−π/2

∣∣∣∑ ane
i λn

γ
s
∣∣∣2 ds.
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Ingham’s inequality

Since λn+1/γ − λn/γ ≥ 1 from the analysis of the previous case we obtain
that ∫ π

2

−π
2

∣∣∣∣∣∑
n

ane
i λn
γ
s

∣∣∣∣∣
2

ds ≤ 16
∑
n

| an |2 .

Hence, (5) is proved with

C2 = 8 max

{(
4T 2

π2
+

1

γ2

)
,

2

γ

}
and the proof concludes.1

1Exercise: where have we used that Tγ ≥ π/2? Can we adapt the proof so that we
obtain the same result without supposing that T is large?
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Ingham’s inequality

Remarks

Inequality (5) holds for all T > 0. On the contrary, inequality (3)
requires the length T of the time interval to be sufficiently large.
Note that, when the distance between two consecutive exponents λn,
the gap, becomes small the value of T must increase proportionally.

In the first inequality (3) T depends on the minimum γ of the
distances between every two consecutive exponents (gap). However,
as we shall see in the next theorem, only the asymptotic distance as
n→∞ between consecutive exponents really matters to determine
the minimal control time T . Note also that the constant C1 in (3)
degenerates when T goes to π/γ.

E. Zuazua (FAU - AvH) Ingham’s inequality April 25, 2020 12 / 28



Ingham’s inequality

In the critical case T = π/γ inequality (3) may hold or not,
depending on the particular family of exponential functions. For
instance, if λn = n for all n ∈ Z, (3) is verified for T = π. This may
be seen immediately by using the orthogonality property of the
complex exponentials in (−π, π). Nevertheless, if λn = n − 1/4 and
λ−n = −λn for all n > 0, (3) fails for T = π (see, [I] or [Y]).
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An extension

As we have said before, the length 2T of the time interval in (3) does not
depend on the smallest distance between two consecutive exponents but
on the asymptotic gap defined by

lim
|n|→∞

| λn+1 − λn |= γ∞. (6)

An induction argument due to A. Haraux (see [H]) allows to give a result
similar to Theorem 1 above in which condition (1) for γ is replaced by a
similar one for γ∞.
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An extension

Theorem

Let (λn)n∈Z be a strictly increasing sequence of real numbers and let
γ∞ > 0 (its definition is given by (6)). For any real T with

T > π/γ∞ (7)

there exist two positive constants C1,C2 > 0 such that, for any finite
sequence (an)n∈Z,

C1

∑
n∈Z
| an |2≤

∫ T

−T

∣∣∣∣∣∑
n∈Z

ane
iλnt

∣∣∣∣∣
2

dt ≤ C2

∑
n∈Z
| an |2 . (8)
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An extension

Let γ := infn λn+1 − λn. As γ∞ > 0, we can prove easily (exercise) that
γ > 0. When γ∞ = γ, the sequence of Theorem 3 satisfies
λn+1 − λn ≥ γ∞ > 0 for all n ∈ Z and we can then apply Theorems 1 and
2. However, in general, γ ≤ γ∞ and Theorem 3 gives a sharper bound on
the minimal time T needed for (8) to hold.

Note that the existence of C1 and C2 in (8) is a consequence of Kahane’s
theorem (see [K]). However, if our purpose were to have an explicit
estimate of C1 or C2 in terms of γ, γ∞ then we would need to use the
constructive argument below. It is important to note that these estimates
depend strongly also on the number of eigenfrequencies λ that fail to fulfill
the gap condition with the asymptotic gap γ∞.
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An extension

Proof of Theorem 3:

The second inequality from (8) follows immediately by using Theorem 2.
To prove the first inequality (8) we follow the induction argument due to
Haraux [H].
Note that for any ε1 > 0, there exists N = N(ε1) ∈ N∗ such that

|λn+1 − λn| ≥ γ∞ − ε1 for any |n| > N. (9)

We begin with the function f0(t) =
∑
|n|>N ane

iλnt and we add the
missing exponentials one by one. From (9) we deduce that Theorems 1
and 2 may be applied to the family

(
e iλnt

)
|n|>N

for any T > π/(γ∞ − ε1)

C1

∑
n>N

| an |2≤
∫ T

−T
| f0(t) |2 dt ≤ C2

∑
n>N

| an |2 . (10)

Let now f1(t) = f0 + aNe
i λN t =

∑
|n|>N ane

iλnt + aNe
i λN t . Without loss of

generality we may suppose that λN = 0 (since we can consider the
function f1(t)e−iλN t instead of f1(t)).
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An extension

Let ε > 0 be such that T ′ = T − ε > π/γ∞. We have
[

∫ ε

0
(f1(t + η)− f1(t)) dη =

∑
n>N

an

(
e iλnε − 1

iλn
− ε
)

e iλnt , ∀t ∈ [0,T ′].
]

Applying now (10) to the function h(t) =

∫ ε

0
(f1(t + η)− f1(t)) dη we

obtain that:

C1

∑
n>N

∣∣∣∣e iλnε − 1

iλn
− ε
∣∣∣∣2 |an|2 ≤ ∫ T ′

−T ′

∣∣∣∣∫ ε

0
(f1(t + η)− f1(t)) dη

∣∣∣∣2 dt.
(11)

Moreover,:
[ ∣∣∣e iλnε − 1− iλnε

∣∣∣2 = |cos(λnε)− 1|2 + |sin(λnε)− λnε|2 =][
= 4sin4

(
λnε

2

)
+ (sin(λnε)− λnε)2 ≥

{
4
(
λnε
π

)4
, if |λn|ε ≤ π

(λnε)2 , if |λn|ε > π.

]
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An extension

Finally, taking into account that |λn| ≥ γ, we obtain that,∣∣∣∣e iλnε − 1

iλn
− ε
∣∣∣∣2 ≥ cε4.

We return now to (11) and we get that:

ε4C1

∑
n>N

|an|2 ≤
∫ T ′

−T ′

∣∣∣∣∫ ε

0

(f1(t + η)− f1(t)) dη

∣∣∣∣2 dt. (12)

On the other hand∫ T ′

−T ′

∣∣∣∣∫ ε

0

(f1(t + η)− f1(t)) dη

∣∣∣∣2 dt ≤ ∫ T ′

−T ′
ε

∫ ε

0

|f1(t + η)− f1(t)|2 dηdt

≤ 2ε

∫ T ′

−T ′

∫ ε

0

(
|f1(t + η)|2 + |f1(t)|2

)
dηdt ≤ 2ε2

∫ T

−T ′
|f1(t)|2 dt+

+ 2ε

∫ ε

0

∫ T ′

−T ′
|f1(t + η)|2 dtdη = 2ε2

∫ T

−T ′
|f1(t)|2 dt + 2ε

∫ ε

0

∫ T ′+η

−T ′+η
|f1(s)|2 dsdη

≤ 2ε2
∫ T

−T

|f1(t)|2 dt + 2ε

∫ ε

0

∫ T

−T

|f1(s)|2 dsdη ≤ 4ε2
∫ T

−T

|f1(t)|2 dt.
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An extension

From (12) it follows that

C1

∑
n>N

|an|2 ≤
∫ T

−T
|f1(t)|2 dt. (13)

On the other hand

|aN |2 =

∣∣∣∣∣f1(t)−
∑
n>N

ane
iλnt

∣∣∣∣∣
2

=
1

2T

∫ T

−T

∣∣∣∣∣f1(t)−
∑
n>N

ane
iλnt

∣∣∣∣∣
2

dt

≤ 1

T

∫ T

−T
|f1(t)|2 dt +

∫ T

−T

∣∣∣∣∣∑
n>N

ane
iλnt

∣∣∣∣∣
2
 dt

≤ 1

T

(∫ T

−T
|f1(t)|2 dt + C 0

2

∑
n>N

|an|2
)

≤ 1

T

(
1 +

C2

C1

)∫ T

−T
|f1(t)|2 dt.
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An extension

From (13) we get that

C1

∑
n≥N
|an|2 ≤

∫ T

−T
|f1(t)|2 dt.

Repeating this argument we may add all the terms ane
iλnt , |n| ≤ N and

we obtain the desired inequalities.
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