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Control

Control theory and applications

Mechanics

Vehicles (guidance, dampers, ABS, ESP, ...), Biology, medicine

Aeronautics, aerospace (shuttle, satellites), robotics . . .
pace ( ) Predator-prey systems, bioreactors, epidemiology,

medicine (peacemakers, laser surgery)

RLY Entry
Guidance

Electricity, electronics

RLC circuits, thermostats, regulation, refrigeration, computers, internet
and telecommunications in general, photography and digital video
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The origins

“... If every instrument could accomplish its own work, obeying
or anticipating the will of others . . . if the shuttle weaved and
the pick touched the lyre without a hand to guide them, chief
workmen would not need servants, nor masters slaves.”

Book |, Chapter Il, of the monograph “Politics” by Aristotle (384-322 B.
C.).

Main motivation: The need of automatizing processes to let the human
being gain in liberty, freedom, and quality of life. a7




Control in an information rich World, SIAM, R. Murray Ed., 2003.



An example: noise reduction
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Other applications of noise reduction




Gaussian filters
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u(x) = [G() FO)I(x) G(x) = (4m) "2 exp(—[x]*/4).



@ [he state equation
Aly) = f(v). (1)

@ y is the state to be controlled.

@ v is the control. It belongs to the set of admissible controls .

@ Roughly speaking the goal is to drive the state y close to a
desired state y :

Y ~ Yd.



In this general functional setting many different mathematical
models feet:

e Linear or nonlinear problems;

e Deterministic or stochastic models:

e Finite dimensional or infinite dimensional models:

e Ordinary Differential Equations (ODE) orPartial Differential
Equations (PDE).

And, of course, when facing complex real life processes, often,
hybrid models might also be needed.



Several kinds of different control problems may also feet in this
frame depending on how the control objective is formulated:

e Optimal control (related with the Calculus of Variations)

minycuad|ly — ydl|°.

e Controllability: Drive exactly the state y to the prescribed one
Yd-

This is a more dynamical notion.
Several relaxed versions also arise: approximate controllability.

e Stabilization or feedback control. (real time control)

v=Fy) Aly)=f(F(y)).



The concept of feedback. Inspired in the capacity of biclogical
systems to self-regulate their activities.

Incorporated to Control Engineering in the twenties by the
engineers of the "Bell Telephone Laboratory” but, at that time, it
was already recognized and consolidated in other areas, such as
Political Economics.

Feedback process: the one in which the state of the system
determines the way the control has to be exerted in real time

Nowadays, feedback processes are ubiquitous in applications to
Engineering, Economy also in Biology, Psychology, etc.

Cause-effect principle — Cause-effect-cause principle.



Some examples

e [ he thermostat:

e [ he control of aircrafts in flight or vehicles in motion:
Y \




The need of fluctuations.

“It is a curious fact that, while political economists
recognize that for the proper action of the law of supply
and demand there must be fluctuations, it has not
generally been recognized by mechanicians in this matter
of the steam engine governor. [ he aim of the mechanical
engineers, as is that of the political economist, should be
not to do away with these fluctuations all together (for
then he does away with the principles of self-regulation),
but to diminish them as much as possible, still leaving
them large enough to have sufficient regulating power.”

H.R. Hall, Governors and Governing Mechanisms, The Technical

Publishing Co., 2nd ed., Manchester 1907.




An example: Lagrange multipliers.

min f(x).

g(x)=c

The answer: critical points x are those for which
VF(x) = AVg(x)

for some real \.

This is so because Vg(x) is the normal to the level set in which
minimization occurs. A necessary condition for the point x to be
critical is that V£ (x) points in this normal direction. Otherwise, if
V(x) had a nontrivial projection over the level set g(x) = ¢ there
would necessarilly exist a better choice of x for which f(x) would
be even smaller.



Automatic control. The number of applications rapidly increased
in the thirties covering different areas like amplifiers in
telecommunications, distribution systems in electrical plants,
stabilization of aeroplanes, electrical mechanisms in paper
production, petroleum and steel industry, ...




By that time there were two clear and distinct approaches:

e State space approach, based on modelling by means of
Ordinary Differential equations (ODE);

e [he frequency domain approach, based in the Fourier
representation of signals.

PHYSICAL SPACE = FREQUENCY SPACE

But after the second world war it was discovered that most
physical systems were nonlinear and nondeterministic.



Aerospace industry
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e Flexible structures.

SIAM Report on “Future Directions in Control Theory. A
Mathematical Perspective”, W. H. Fleming et al., 1988.



e Seismic waves, earthquakes.

F. Cotton, P-Y. Bard, C. Berge et D. Hatzfeld, Qu'est-ce qui
fait vibrer Grenoble?, La Recherche, 320, Mai, 1999, 39-43.



e Quantum control and Computing.
Laser control in Quantum mechanical and molecular systems

to design coherent vibrational states.

In this case the fundamental equation is the Schrodinger one.
Most of the theory we shall develop here applies in this case
too. The Schrodinger equation may be viewed as a wave
equation with inifnite speed of propagation.
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P. Brumer and M. Shapiro, Laser Control of Chemical
reactions, Scientific American, March, 1995, pp.34-39.



e Irrigation systems, ancient Mesopotamia, 2000 BC.

e Harpenodaptail, ancient Egypt, the string stretchers.

e Primal: The minimal distance between two points is given by

the straight line.
e Dual: The maximal distance between the extremes of a cord is

obtained when the cord is along a straight line.

In mathematical terms, things are not easy:
To minimize the functional

/O Ix'(£)]]dt

among the set of parametrized curves x : [0,1] — R, such that
x(0) = A and x(1) = B.

We easily end up working in the BV class of functions of bounded
variation, out of the most natural and simple context of Hilbert

spaces.



Roman aqueducts. Systems of water transportation endowed with
valves and regulators.

The pendulum. The works of Ch. Huygens and R. Hooke, in the
end of the XVII century, the goal being measuring in a precise way
location and time, so precious in navigation.




The first mathematical rigorous analysis of the stability properties
of the steam engine was done by Lord J. C. Maxwell, in 1868.
The explanation of some erratic behaviors was explained. Until
them it was not well understood why apparently more ellaborated
and perfect regulators could have a bad behavior.

The reason is now refered to as the overdamping phenomenon.
Consider the equation of the pendulum:

x4+ x=0.

This describes a pure conservative dynamics: the energy

o(t) = S B3(R) + X (1)P]

IS constant In time.
Let us now consider the dynamics of the pendulum in presence of a
friction term:

X"+ x = —kx',

k being a positive constant k > 0.



The energy decays exponently. But the decay rate does not
necessarily increase with the damping parameter k.

Indeed, computed the eigenvalues of the characteristic equation
one finds:

A = [~ k£ VK2 4]/2.

It is easy to see that AL increases as kK > 2 increases.
Indeed,

- —k*+ke—4 —4

 k+VkP—4  k+VkZ—4

This shows that A, — 0 when kK — +o00, so, the decay of the
system gets worse when k is very large.

This confirms the prediction that optimal controls and strategies

are often complex and that they do not necessarily obey to the
very first intuition.

At



The Calculus of Variations
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The Calculus of Variations

e L1 =0

Leonhard Euler (1707-1783)

For since the fabric of the universe is most perfect and the work
of a most wise creator, nothing at all takes place in the universe
in which some rule of the maximum or minimum does not

appear.

| .eonhard

Euler

A\

\ (1707-1783)




The Calculus of Variations

The Calculus of Variations = The search of minimality :
Isoperimetric inequalities

The isoperimetric inequality states, for the length L of a closed curve and
the area A of the planar region that it encloses, that

AA < L2,
and that equality holds if and only if the curve is a circle.

Dido’s problem; named after Dido, the legendary founder and first queen
of Carthage.




The Calculus of Variations

Geodesic curves

The curve of shortest length, geodesic, connecting two points.




The Calculus of Variations

Fermat’s principle/Snellious law

Fermat’s principle: light follows the path of shortest optical length
connecting two points, where the optical length depends upon the material
of the medium.

E. Hairer

G.Wanner

Analysis
by Its History

&) Springe Sin(el) 1 m

Sin(92) B Vo B n1'
Named after the dutch astronomer Willebrord Snellius (1580 - 1626).
Pierre de Fermat (1601 - 1665).



The Calculus of Variations

V,

To find x s. t.

Va2 B ((—x)

V1 V2

T

Fermat found the problem too difficult for an analytical treatment (|
admit that this problem is not one of the easiest). The computations
were then proudly performed by Leibniz (1684)



The Calculus of Variations

1 2x 1 2(¢ — x)

T = .
Vi2va2 +x2 2 2./b? + (£ — x)?

Observing that sin(a1) = x/Va2 + x2; sin(az) = (£ — x)//b? + (£ — x)?
we see that this derivative vanishes whenever

Sin(el) B ﬁ

sin(6’2) B V2.
Furthermore:

T" = ! il I 1 il > 0,
Vi (32 -+ )(2)3/2 Vo (b2 4+ (g _ X)2)3/2

showing that the critical point is the minimizer.



The Calculus of Variations

Optimal transport

In mathematics and economics, transportation theory refers to the study
of optimal transportation and allocation of resources. The problem was

formalized by the French mathematician Gaspard Monge in 1781 ( “Sur
la théorie des déblais et des remblais” (Mém. de I'Acad. de Paris, 1781))

MEMORIAL SENDANT
SCIENCES MATHEMATIQUES
s E

| Sfclj\rrz E
RUE

MONGE

1746 - 1818
MATHREMATICIEN , UN DES FONDATEURS
DE L'ECOLE POLYTECHNIQUE

PARIS

But the origins of the potential applications of the idea of optimal
transport and geodesic paths goes back to the ancient Egypt where the
“harpenodaptai” had as main task drawing long straight lines on the sand

of the desert.



The Calculus of Variations

Minimal surfaces

Minimal surfaces are defined as surfaces with zero mean curvature.
Finding a minimal surface of a boundary with specified constraints is a
problem in the Calculus of Variations and is sometimes known as
Plateau’s problem.

Physical models of area-minimizing minimal surfaces can be made by
dipping a wire frame into a soap solution, forming a soap film, which is a
minimal surface whose boundary is the wire frame.

Enneper’s surface:

x=u(l—u?/3+v?)/3;y=—v(l—v?/3+u%)/3;z=(u*—v?)/3.




The Calculus of Variations

Computational minimization

J(u™) = min J(u).

uclU

Gradient methods:

ugr1 = ux — pVJ(ug).




The Calculus of Variations

Montecarlo methods
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Controllability

“Cybernétique” was proposed by the French physicist A.-M. Ampere in
the XIX Century to design the nonexistent science of process controlling.
This was quickly forgotten until 1948, when Norbert Wiener
(1894-1964) chose “Cybernetics” as the title of his famous book.

Wiener defined Cybernetics as “ the science of control and communication
in animals and machines”.

In this way, he established the connection between Control Theory and

Physiology and anticipated that, in a desirable future, engines would obey
and imitate human beings.




Controllability

Robotic arm




Controllability

Let n,m € N* and T > 0 and consider the following linear
finite-dimensional system

X'(t) = Ax(t) + Bu(t), te(0,T); x(0)=x". (1)

In (1), Ais a n x n real matrix, B is of dimensions n x m and x° is the
initial sate of the sytem in R". The function x : [0, T| — R" represents
thestate and v : [0, T| — R™ the control.

; Can we control the state x of n components with only m controls, even if
n>>m¢

(1958, Rudolf Emil Kalman (1930-2016)) System (1) is controllable iff

rank[B, AB,--- ,A"1B] = n.




Controllability

An example: Nelson’s car.

I

4

Two controls suffice to control a four-dimensional dynamical system.

I

>

E. Sontag, Mathematical control theory, 2nd ed., Texts in Applied
Mathematics, vol. 6, Springer-Verlag, NewYork, 1998.



Controllability

(4e) ~ a + mmee®[f1, f2](a

i,s — 07)

J. M. Coron, June 2011.

(U1, ’U,z) — (771: 0)



Controllability
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Controllability




Table of Contents

O Optimal Design



Optimal Design
The optimal pancake

WMatlOnline

The perfect pancake? Easy, just follow this
formula ... 100 -[10L-7F + C(k-C) + T(m -
IS - E)

By Daily Mail Reporter
Last updated at 9:49 AM on 24th February 2009

With Shrove Tuesday tomorrow it was perhaps inevitable that an eager scientist
would apply their skills to creating the perfect pancake.

Maths expert Dr Ruth Fairclough stepped up to the challenge, unveiling a
complex algebra formula to help chefs nail the dish on the day.

The 34-year-old senior lecturer of mathematics and statistics worked out the food
formula because her two daughters loved eating pancakes so much.

Dr Ruth, who teaches at Wolverhampton University found that
100 -[10L - 7F + C(k - C) + T(m - T)]/(S - E) created the tastiest snack.

In the complex formula L represents the number of lumps in the batter and C
equals its consistency.

The letter F stands for the flipping score, k is the ideal consistency and T is the
temperature of the pan.

Ideal temp of pan is represented by m, S is the length of time the batter stands
before cooking and E is the length of time the cooked pancake sits before being
eaten.




Optimal Design
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Optimal Design

Optimal shape design in aeronautics.

@ Objective: To modify the shape of the airplane so to improve its
efficiency, security, reduce noise, energy consumption, reduce drag,
augment lift,...

@ Point of view: That of the wind tunnel. The airplane is fixed while
air is flowing around.

@ Variations: When modifying the shape of the airplane, the way air is
flowing around is modified, and the pressure field it applies into the
airplane as well. The aerodynamical properties of the airplane are
modified.




Optimal Design

Tools

@ Computational fluid mechanics: It allows to simulate the flow of air
around a cavity.

@ Optimization: It allows building an iterative algorithm to improve
performance.
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Optimal Design

Mach number: 0.31 040 0.41 043 044 0.46 047 049 0.50 0.51 0.51 0.53 0.54 0.54 0.56 0.57 0.59 0.60

Computed pressure field over the surface of the airplane and flow lines of
particles of air.



Optimal Design

The method consists on formulating the problem in the context of the
Calculus of Variations. To minimize

J(Q") = Qngénd J(Q2)

where €4 is the class of admissible shapes 2, and J = is the cost
functional measuring the efficiency of the design (drag, lift,...)

J depends on €2 but not directly, rather thorugh u(£2), the solution of the
air-dynamics in the exterior of the airplane.
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Optimal Design

Leonhard Euler

(1707-1783) derived the equations for the motion of perfect fluids, in the

absence of viscosity:
ur+u-Vu=Vp.

But D'Alembert observed that the flight of birds would be impossible
according to that model.

Claude Louis Marie Henri Navier (1785-1836) and Sir George Gabriel
Stokes (1819-1903) much later incorporated the viscosity term:

ur—vAu+u-Vu=Vp.



Optimal Design

There are many open complex problems in the field of Fluid Mechanics.

Fluid Mechanics is one of the most important areas of Physics because of
its impact on our life : air, water, blood,...



Optimal Design

Birch and Swinnerton-Dyer

Yang-Mills and Mass Gap Poincaré Conjecture Navier-Stokes Equation T
Conjecture

Riemann Hypothesis P vs NP Problem Hodge Conjecture

The millenium problems



Optimal Design

The science program is still ongoing to a large extent thanks to computers.
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Optimal Design

Pascaline, Blaise Pascal, 1645; ENIAC: Electronic Numerical Integrator
And Computer, 1946; Macbook Air, 2008.
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Optimization

An example in logistics

This is a typical and ubiquitous example in linear programming. A
company s;, | <1 < M items in each of the M storage locations. N
clients request r; items each, 1 < j < N. The cost of transportation
between the /-th storage location and the j-th client is ¢;;. We have to
decide about the number of items to be delivered from the /-th storage
location the j-th client, v;;.

Of course we want to minimize the cost of transportation. The problem is
then that of minimizing the functional

mf S‘S‘ Cjj Vijj

U} =1 j=1

under the constraints

i = 0; ZVU<5,,Zv,-j:rj,1§i§M;1§j§N.
=1



Optimization

In mathematics, computational science, or management science,
mathematical optimization (alternatively, optimization or mathematical
programming) refers to the selection of a best element from some set of
available alternatives.

@ Convex programming
Linear programming
Semidefinite programming
Conic programming
Stochastic programming
Robust programming
Combinatorial optimization
Dynamic programming

Heuristics and metaheuristics



These tools are so much used that nowadays there is plenty of
software available both free and comercial: IPOPT

UL TTIVUITIVG Vi VUV V[ Lk eV iV L I

Welcome to the Ipopt home page

Note that these project webpages are based on Wiki, which allows webusers to modify the content
to correct typos, add information, or share their experience and tips with other users. You are
welcome to contribute to these project webpages. To edit these pages or submit a ticket you must
first register and login.

Introduction

Ipopt (Interior Point OPTimizer, pronounced eye-pea-Opt) is a software package for large-scale
nonlinear optimization. It is designed to find (local) solutions of mathematical optimization problems
of the from

min f(x)
X 1n R™n

<
<

g(x) <
X <

s.t. g L g U
X L X U
where £(x): R"n --> R is the objective function, and g(x): R"n --> R"m are the constraint
functions. The vectors g L. and g U denote the lower and upper bounds on the constraints, and the
vectors x_L and x_U are the bounds on the variables x. The functions f(x) and g(x) can be
nonlinear and nonconvex, but should be twice continuously differentiable. Note that equality
constraints can be formulated in the above formulation by setting the corresponding components of

g L and g U to the same value.
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Perpectives

Control theory and applications

Mechanics

Vehicles (guidance, dampers, ABS, ESP, ...), Biology, medicine

Aeronautics, aerospace (shuttle, satellites), robotics . . .
pace ( ) Predator-prey systems, bioreactors, epidemiology,

medicine (peacemakers, laser surgery)

RLY Entry
Guidance

Electricity, electronics

RLC circuits, thermostats, regulation, refrigeration, computers, internet
and telecommunications in general, photography and digital video
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Mathematics are and will be increasingly influenced by the challenge of
dealing with complexity and multidisciplinarity. The following areas will

gain relevance:
@ Discrete mathematics, combinatorics, graphs,...;
@ Data mining/Big data;

@ Statistical learning;
and other fields of research such as neurosciences and social sciences.




A mathematician is a machine for turning coffee into theorems

The Erdos Number Project

This is the website for the Erdés Number Project, which studies
research collaboration among mathematicians.

The site is maintained by Jerry Grossman at Oakland University. Patrick lon,
a retired editor at Mathematical Reviews, and Rodrigo De Castro at the
Universidad Nacional de Colombia, Bogota provided assistance in the past.
Please address all comments, additions, and corrections to Jerry at
grossman@oakland.edu.

Erdos numbers have been a part of the folklore of mathematicians
throughout the world for many years. For an introduction to our project, a
description of what Erdés numbers are, what they can be used for, who
cares, and so on, choose the “What's It All About?” link below. To find out
who Paul Erdos is, look at this biography at the MacTutor History of
Mathematics Archive, or choose the “Information about Paul Erdés” link
below. Some useful information can also be found in this Wikipedia
article, which may or may not be totally accurate.

Paul Erdos (1913-1996) was a Hungarian mathematician. He published
more papers than any other mathematician in history, working with
hundreds of collaborators. He worked on problems in combinatorics, graph
theory, number theory, classical analysis, approximation theory, set theory,
and probability theory.



There will be unexpected advances in computing

algorithms...

Year

Development

Key early figures

263
1671
1795
1814
1855
1895
1910
1936
1943
1946
1947
1947
1952
1952
1954
1958
1959
1961
1965
1971
1971
1973
1976
1976
1977
1977
1977
1982
1984
1987
1991

Gaussian elimination
Newton’s method
Least-squares fitting
Gauss quadrature

Adams ODE formulas
Runge-Kutta ODE formulas
Finite differences for PDE
Floating-point arithmetic
Finite elements for PDE
Splines

Monte Carlo simulation
Simplex algorithm
Lanczos and CG iterations
Stiff ODE solvers

Fortran

Orthogonal linear algebra
Quasi-Newton iterations
QR algorithm for eigenvalues
Fast Fourier transform
Spectral methods for PDE
Radial basis functions
Multigrid iterations

EISPACK, LINPACK, LAPACK
Nonsymmetric Krylov iterations
Preconditioned matrix iterations

MATLAB

IEEE arithmetic
Wavelets

interior-point methods
Fast multipole method
Automatic differentiation

Liu, Lagrange, Gauss, Jacobi

Newton, Raphson, Simpson

Gauss, Legendre

Gauss, Jacobi, Christoffel, Stieltjes

Euler, Adams, Bashforth

Runge, Heun, Kutta

Richardson, Southwell, Courant, von Neumann, Lax
Torres y Quevedo, Zuse, Turing

Courant, Feng, Argyris, Clough

Schoenberg, de Casteljau, Bezier, de Boor
Ulam, von Neumann, Metropolis

Kantorovich, Dantzig

Lanczos, Hestenes, Stiefel

Curtiss, Hirschfelder, Dahlquist, Gear

Backus

Aitken, Givens, Householder, Wilkinson, Golub
Davidon, Fletcher, Powell, Broyden
Rutishauser, Kublanovskaya, Francis, Wilkinson
Gauss, Cooley, Tukey, Sande

Chebyshev, Lanczos, Clenshaw, Orszag, Gottlieb
Hardy, Askey, Duchon, Micchelli

Fedorenko, Bakhvalov, Brandt, Hackbusch
Moler, Stewart, Smith, Dongarra, Demmel, Bai
Vinsome, Saad, van der Vorst, Sorensen

van der Vorst, Meijerink

Moler

Kahan

Morlet, Grossmann, Meyer, Daubechies

Fiacco, McCormick, Karmarkar, Megiddo
Rokhlin, Greengard

Iri, Bischof, Carle, Griewank



Supervised learning
Goal: Find an approximation of a function f, : RY — R™ from a dataset
X,,y,} CRdXN RmXN

drawn from an unknown probability measure p on RY x R™.
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Universal approximation theorem

00 02 04 06 08 10
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Approximation by Superpositions of a Sigmoidal Function*
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